1
0
Fork 0
codeberg-forgejo/vendor/github.com/golang-jwt/jwt/ecdsa_go1.14.go

100 lines
2.5 KiB
Go

//+build !go1.15
package jwt
import (
"crypto/ecdsa"
"crypto/rand"
"math/big"
"math/bits"
)
// Implements the Sign method from SigningMethod
// For this signing method, key must be an ecdsa.PrivateKey struct
func (m *SigningMethodECDSA) Sign(signingString string, key interface{}) (string, error) {
// Get the key
var ecdsaKey *ecdsa.PrivateKey
switch k := key.(type) {
case *ecdsa.PrivateKey:
ecdsaKey = k
default:
return "", ErrInvalidKeyType
}
// Create the hasher
if !m.Hash.Available() {
return "", ErrHashUnavailable
}
hasher := m.Hash.New()
hasher.Write([]byte(signingString))
// Sign the string and return r, s
if r, s, err := ecdsa.Sign(rand.Reader, ecdsaKey, hasher.Sum(nil)); err == nil {
curveBits := ecdsaKey.Curve.Params().BitSize
if m.CurveBits != curveBits {
return "", ErrInvalidKey
}
keyBytes := curveBits / 8
if curveBits%8 > 0 {
keyBytes += 1
}
// We serialize the outputs (r and s) into big-endian byte arrays
// padded with zeros on the left to make sure the sizes work out.
// Output must be 2*keyBytes long.
out := make([]byte, 2*keyBytes)
fillBytesInt(r, out[0:keyBytes]) // r is assigned to the first half of output.
fillBytesInt(s, out[keyBytes:]) // s is assigned to the second half of output.
return EncodeSegment(out), nil
} else {
return "", err
}
}
func fillBytesInt(x *big.Int, buf []byte) []byte {
// Clear whole buffer. (This gets optimized into a memclr.)
for i := range buf {
buf[i] = 0
}
// This code is deeply inspired by go's own implementation but rewritten.
// Although this function is called bits it returns words
words := x.Bits()
// Words are uints as per the definition of bits.Word and thus there are usually (64) /8 bytes per word
bytesPerWord := bits.UintSize / 8
// If our buffer is longer than the expected number of words start mid-way
pos := len(buf) - len(words)*bytesPerWord
// Now iterate across the words (backwards)
for i := range words {
// Grab the last word (Which is the biggest number)
word := words[len(words)-1-i]
// Now for each byte in the word
// [abcd...] we want buf[0] = a, buf[1] = b ...
for j := bytesPerWord; j > 0; j-- {
d := byte(word)
// if our position is less than 0 then panic
if pos+j-1 >= 0 {
// set the value of the byte to the byte
buf[pos+j-1] = d
} else if d != 0 {
panic("math/big: buffer too small to fit value") // have to use the same panic string for complete compatibility
}
// shift the word 8 bits and reloop.
word >>= 8
}
pos += bytesPerWord
}
return buf
}