caddy/modules/caddyhttp/matchers.go

1571 lines
49 KiB
Go

// Copyright 2015 Matthew Holt and The Caddy Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package caddyhttp
import (
"encoding/json"
"errors"
"fmt"
"net"
"net/http"
"net/textproto"
"net/url"
"path"
"reflect"
"regexp"
"runtime"
"slices"
"sort"
"strconv"
"strings"
"github.com/google/cel-go/cel"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"golang.org/x/net/idna"
"github.com/caddyserver/caddy/v2"
"github.com/caddyserver/caddy/v2/caddyconfig/caddyfile"
)
type (
// MatchHost matches requests by the Host value (case-insensitive).
//
// When used in a top-level HTTP route,
// [qualifying domain names](/docs/automatic-https#hostname-requirements)
// may trigger [automatic HTTPS](/docs/automatic-https), which automatically
// provisions and renews certificates for you. Before doing this, you
// should ensure that DNS records for these domains are properly configured,
// especially A/AAAA pointed at your server.
//
// Automatic HTTPS can be
// [customized or disabled](/docs/modules/http#servers/automatic_https).
//
// Wildcards (`*`) may be used to represent exactly one label of the
// hostname, in accordance with RFC 1034 (because host matchers are also
// used for automatic HTTPS which influences TLS certificates). Thus,
// a host of `*` matches hosts like `localhost` or `internal` but not
// `example.com`. To catch all hosts, omit the host matcher entirely.
//
// The wildcard can be useful for matching all subdomains, for example:
// `*.example.com` matches `foo.example.com` but not `foo.bar.example.com`.
//
// Duplicate entries will return an error.
MatchHost []string
// MatchPath case-insensitively matches requests by the URI's path. Path
// matching is exact, not prefix-based, giving you more control and clarity
// over matching. Wildcards (`*`) may be used:
//
// - At the end only, for a prefix match (`/prefix/*`)
// - At the beginning only, for a suffix match (`*.suffix`)
// - On both sides only, for a substring match (`*/contains/*`)
// - In the middle, for a globular match (`/accounts/*/info`)
//
// Slashes are significant; i.e. `/foo*` matches `/foo`, `/foo/`, `/foo/bar`,
// and `/foobar`; but `/foo/*` does not match `/foo` or `/foobar`. Valid
// paths start with a slash `/`.
//
// Because there are, in general, multiple possible escaped forms of any
// path, path matchers operate in unescaped space; that is, path matchers
// should be written in their unescaped form to prevent ambiguities and
// possible security issues, as all request paths will be normalized to
// their unescaped forms before matcher evaluation.
//
// However, escape sequences in a match pattern are supported; they are
// compared with the request's raw/escaped path for those bytes only.
// In other words, a matcher of `/foo%2Fbar` will match a request path
// of precisely `/foo%2Fbar`, but not `/foo/bar`. It follows that matching
// the literal percent sign (%) in normalized space can be done using the
// escaped form, `%25`.
//
// Even though wildcards (`*`) operate in the normalized space, the special
// escaped wildcard (`%*`), which is not a valid escape sequence, may be
// used in place of a span that should NOT be decoded; that is, `/bands/%*`
// will match `/bands/AC%2fDC` whereas `/bands/*` will not.
//
// Even though path matching is done in normalized space, the special
// wildcard `%*` may be used in place of a span that should NOT be decoded;
// that is, `/bands/%*/` will match `/bands/AC%2fDC/` whereas `/bands/*/`
// will not.
//
// This matcher is fast, so it does not support regular expressions or
// capture groups. For slower but more powerful matching, use the
// path_regexp matcher. (Note that due to the special treatment of
// escape sequences in matcher patterns, they may perform slightly slower
// in high-traffic environments.)
MatchPath []string
// MatchPathRE matches requests by a regular expression on the URI's path.
// Path matching is performed in the unescaped (decoded) form of the path.
//
// Upon a match, it adds placeholders to the request: `{http.regexp.name.capture_group}`
// where `name` is the regular expression's name, and `capture_group` is either
// the named or positional capture group from the expression itself. If no name
// is given, then the placeholder omits the name: `{http.regexp.capture_group}`
// (potentially leading to collisions).
MatchPathRE struct{ MatchRegexp }
// MatchMethod matches requests by the method.
MatchMethod []string
// MatchQuery matches requests by the URI's query string. It takes a JSON object
// keyed by the query keys, with an array of string values to match for that key.
// Query key matches are exact, but wildcards may be used for value matches. Both
// keys and values may be placeholders.
//
// An example of the structure to match `?key=value&topic=api&query=something` is:
//
// ```json
// {
// "key": ["value"],
// "topic": ["api"],
// "query": ["*"]
// }
// ```
//
// Invalid query strings, including those with bad escapings or illegal characters
// like semicolons, will fail to parse and thus fail to match.
//
// **NOTE:** Notice that query string values are arrays, not singular values. This is
// because repeated keys are valid in query strings, and each one may have a
// different value. This matcher will match for a key if any one of its configured
// values is assigned in the query string. Backend applications relying on query
// strings MUST take into consideration that query string values are arrays and can
// have multiple values.
MatchQuery url.Values
// MatchHeader matches requests by header fields. The key is the field
// name and the array is the list of field values. It performs fast,
// exact string comparisons of the field values. Fast prefix, suffix,
// and substring matches can also be done by suffixing, prefixing, or
// surrounding the value with the wildcard `*` character, respectively.
// If a list is null, the header must not exist. If the list is empty,
// the field must simply exist, regardless of its value.
//
// **NOTE:** Notice that header values are arrays, not singular values. This is
// because repeated fields are valid in headers, and each one may have a
// different value. This matcher will match for a field if any one of its configured
// values matches in the header. Backend applications relying on headers MUST take
// into consideration that header field values are arrays and can have multiple
// values.
MatchHeader http.Header
// MatchHeaderRE matches requests by a regular expression on header fields.
//
// Upon a match, it adds placeholders to the request: `{http.regexp.name.capture_group}`
// where `name` is the regular expression's name, and `capture_group` is either
// the named or positional capture group from the expression itself. If no name
// is given, then the placeholder omits the name: `{http.regexp.capture_group}`
// (potentially leading to collisions).
MatchHeaderRE map[string]*MatchRegexp
// MatchProtocol matches requests by protocol. Recognized values are
// "http", "https", and "grpc" for broad protocol matches, or specific
// HTTP versions can be specified like so: "http/1", "http/1.1",
// "http/2", "http/3", or minimum versions: "http/2+", etc.
MatchProtocol string
// MatchTLS matches HTTP requests based on the underlying
// TLS connection state. If this matcher is specified but
// the request did not come over TLS, it will never match.
// If this matcher is specified but is empty and the request
// did come in over TLS, it will always match.
MatchTLS struct {
// Matches if the TLS handshake has completed. QUIC 0-RTT early
// data may arrive before the handshake completes. Generally, it
// is unsafe to replay these requests if they are not idempotent;
// additionally, the remote IP of early data packets can more
// easily be spoofed. It is conventional to respond with HTTP 425
// Too Early if the request cannot risk being processed in this
// state.
HandshakeComplete *bool `json:"handshake_complete,omitempty"`
}
// MatchNot matches requests by negating the results of its matcher
// sets. A single "not" matcher takes one or more matcher sets. Each
// matcher set is OR'ed; in other words, if any matcher set returns
// true, the final result of the "not" matcher is false. Individual
// matchers within a set work the same (i.e. different matchers in
// the same set are AND'ed).
//
// NOTE: The generated docs which describe the structure of this
// module are wrong because of how this type unmarshals JSON in a
// custom way. The correct structure is:
//
// ```json
// [
// {},
// {}
// ]
// ```
//
// where each of the array elements is a matcher set, i.e. an
// object keyed by matcher name.
MatchNot struct {
MatcherSetsRaw []caddy.ModuleMap `json:"-" caddy:"namespace=http.matchers"`
MatcherSets []MatcherSet `json:"-"`
}
)
func init() {
caddy.RegisterModule(MatchHost{})
caddy.RegisterModule(MatchPath{})
caddy.RegisterModule(MatchPathRE{})
caddy.RegisterModule(MatchMethod{})
caddy.RegisterModule(MatchQuery{})
caddy.RegisterModule(MatchHeader{})
caddy.RegisterModule(MatchHeaderRE{})
caddy.RegisterModule(new(MatchProtocol))
caddy.RegisterModule(MatchTLS{})
caddy.RegisterModule(MatchNot{})
}
// CaddyModule returns the Caddy module information.
func (MatchHost) CaddyModule() caddy.ModuleInfo {
return caddy.ModuleInfo{
ID: "http.matchers.host",
New: func() caddy.Module { return new(MatchHost) },
}
}
// UnmarshalCaddyfile implements caddyfile.Unmarshaler.
func (m *MatchHost) UnmarshalCaddyfile(d *caddyfile.Dispenser) error {
// iterate to merge multiple matchers into one
for d.Next() {
*m = append(*m, d.RemainingArgs()...)
if d.NextBlock(0) {
return d.Err("malformed host matcher: blocks are not supported")
}
}
return nil
}
// Provision sets up and validates m, including making it more efficient for large lists.
func (m MatchHost) Provision(_ caddy.Context) error {
// check for duplicates; they are nonsensical and reduce efficiency
// (we could just remove them, but the user should know their config is erroneous)
seen := make(map[string]int, len(m))
for i, host := range m {
asciiHost, err := idna.ToASCII(host)
if err != nil {
return fmt.Errorf("converting hostname '%s' to ASCII: %v", host, err)
}
if asciiHost != host {
m[i] = asciiHost
}
normalizedHost := strings.ToLower(asciiHost)
if firstI, ok := seen[normalizedHost]; ok {
return fmt.Errorf("host at index %d is repeated at index %d: %s", firstI, i, host)
}
seen[normalizedHost] = i
}
if m.large() {
// sort the slice lexicographically, grouping "fuzzy" entries (wildcards and placeholders)
// at the front of the list; this allows us to use binary search for exact matches, which
// we have seen from experience is the most common kind of value in large lists; and any
// other kinds of values (wildcards and placeholders) are grouped in front so the linear
// search should find a match fairly quickly
sort.Slice(m, func(i, j int) bool {
iInexact, jInexact := m.fuzzy(m[i]), m.fuzzy(m[j])
if iInexact && !jInexact {
return true
}
if !iInexact && jInexact {
return false
}
return m[i] < m[j]
})
}
return nil
}
// Match returns true if r matches m.
func (m MatchHost) Match(r *http.Request) bool {
reqHost, _, err := net.SplitHostPort(r.Host)
if err != nil {
// OK; probably didn't have a port
reqHost = r.Host
// make sure we strip the brackets from IPv6 addresses
reqHost = strings.TrimPrefix(reqHost, "[")
reqHost = strings.TrimSuffix(reqHost, "]")
}
if m.large() {
// fast path: locate exact match using binary search (about 100-1000x faster for large lists)
pos := sort.Search(len(m), func(i int) bool {
if m.fuzzy(m[i]) {
return false
}
return m[i] >= reqHost
})
if pos < len(m) && m[pos] == reqHost {
return true
}
}
repl := r.Context().Value(caddy.ReplacerCtxKey).(*caddy.Replacer)
outer:
for _, host := range m {
// fast path: if matcher is large, we already know we don't have an exact
// match, so we're only looking for fuzzy match now, which should be at the
// front of the list; if we have reached a value that is not fuzzy, there
// will be no match and we can short-circuit for efficiency
if m.large() && !m.fuzzy(host) {
break
}
host = repl.ReplaceAll(host, "")
if strings.Contains(host, "*") {
patternParts := strings.Split(host, ".")
incomingParts := strings.Split(reqHost, ".")
if len(patternParts) != len(incomingParts) {
continue
}
for i := range patternParts {
if patternParts[i] == "*" {
continue
}
if !strings.EqualFold(patternParts[i], incomingParts[i]) {
continue outer
}
}
return true
} else if strings.EqualFold(reqHost, host) {
return true
}
}
return false
}
// CELLibrary produces options that expose this matcher for use in CEL
// expression matchers.
//
// Example:
//
// expression host('localhost')
func (MatchHost) CELLibrary(ctx caddy.Context) (cel.Library, error) {
return CELMatcherImpl(
"host",
"host_match_request_list",
[]*cel.Type{cel.ListType(cel.StringType)},
func(data ref.Val) (RequestMatcher, error) {
refStringList := reflect.TypeOf([]string{})
strList, err := data.ConvertToNative(refStringList)
if err != nil {
return nil, err
}
matcher := MatchHost(strList.([]string))
err = matcher.Provision(ctx)
return matcher, err
},
)
}
// fuzzy returns true if the given hostname h is not a specific
// hostname, e.g. has placeholders or wildcards.
func (MatchHost) fuzzy(h string) bool { return strings.ContainsAny(h, "{*") }
// large returns true if m is considered to be large. Optimizing
// the matcher for smaller lists has diminishing returns.
// See related benchmark function in test file to conduct experiments.
func (m MatchHost) large() bool { return len(m) > 100 }
// CaddyModule returns the Caddy module information.
func (MatchPath) CaddyModule() caddy.ModuleInfo {
return caddy.ModuleInfo{
ID: "http.matchers.path",
New: func() caddy.Module { return new(MatchPath) },
}
}
// Provision lower-cases the paths in m to ensure case-insensitive matching.
func (m MatchPath) Provision(_ caddy.Context) error {
for i := range m {
if m[i] == "*" && i > 0 {
// will always match, so just put it first
m[0] = m[i]
break
}
m[i] = strings.ToLower(m[i])
}
return nil
}
// Match returns true if r matches m.
func (m MatchPath) Match(r *http.Request) bool {
// Even though RFC 9110 says that path matching is case-sensitive
// (https://www.rfc-editor.org/rfc/rfc9110.html#section-4.2.3),
// we do case-insensitive matching to mitigate security issues
// related to differences between operating systems, applications,
// etc; if case-sensitive matching is needed, the regex matcher
// can be used instead.
reqPath := strings.ToLower(r.URL.Path)
// See #2917; Windows ignores trailing dots and spaces
// when accessing files (sigh), potentially causing a
// security risk (cry) if PHP files end up being served
// as static files, exposing the source code, instead of
// being matched by *.php to be treated as PHP scripts.
if runtime.GOOS == "windows" { // issue #5613
reqPath = strings.TrimRight(reqPath, ". ")
}
repl := r.Context().Value(caddy.ReplacerCtxKey).(*caddy.Replacer)
for _, matchPattern := range m {
matchPattern = repl.ReplaceAll(matchPattern, "")
// special case: whole path is wildcard; this is unnecessary
// as it matches all requests, which is the same as no matcher
if matchPattern == "*" {
return true
}
// Clean the path, merge doubled slashes, etc.
// This ensures maliciously crafted requests can't bypass
// the path matcher. See #4407. Good security posture
// requires that we should do all we can to reduce any
// funny-looking paths into "normalized" forms such that
// weird variants can't sneak by.
//
// How we clean the path depends on the kind of pattern:
// we either merge slashes or we don't. If the pattern
// has double slashes, we preserve them in the path.
//
// TODO: Despite the fact that the *vast* majority of path
// matchers have only 1 pattern, a possible optimization is
// to remember the cleaned form of the path for future
// iterations; it's just that the way we clean depends on
// the kind of pattern.
mergeSlashes := !strings.Contains(matchPattern, "//")
// if '%' appears in the match pattern, we interpret that to mean
// the intent is to compare that part of the path in raw/escaped
// space; i.e. "%40"=="%40", not "@", and "%2F"=="%2F", not "/"
if strings.Contains(matchPattern, "%") {
reqPathForPattern := CleanPath(r.URL.EscapedPath(), mergeSlashes)
if m.matchPatternWithEscapeSequence(reqPathForPattern, matchPattern) {
return true
}
// doing prefix/suffix/substring matches doesn't make sense
continue
}
reqPathForPattern := CleanPath(reqPath, mergeSlashes)
// for substring, prefix, and suffix matching, only perform those
// special, fast matches if they are the only wildcards in the pattern;
// otherwise we assume a globular match if any * appears in the middle
// special case: first and last characters are wildcard,
// treat it as a fast substring match
if strings.Count(matchPattern, "*") == 2 &&
strings.HasPrefix(matchPattern, "*") &&
strings.HasSuffix(matchPattern, "*") {
if strings.Contains(reqPathForPattern, matchPattern[1:len(matchPattern)-1]) {
return true
}
continue
}
// only perform prefix/suffix match if it is the only wildcard...
// I think that is more correct most of the time
if strings.Count(matchPattern, "*") == 1 {
// special case: first character is a wildcard,
// treat it as a fast suffix match
if strings.HasPrefix(matchPattern, "*") {
if strings.HasSuffix(reqPathForPattern, matchPattern[1:]) {
return true
}
continue
}
// special case: last character is a wildcard,
// treat it as a fast prefix match
if strings.HasSuffix(matchPattern, "*") {
if strings.HasPrefix(reqPathForPattern, matchPattern[:len(matchPattern)-1]) {
return true
}
continue
}
}
// at last, use globular matching, which also is exact matching
// if there are no glob/wildcard chars; we ignore the error here
// because we can't handle it anyway
matches, _ := path.Match(matchPattern, reqPathForPattern)
if matches {
return true
}
}
return false
}
func (MatchPath) matchPatternWithEscapeSequence(escapedPath, matchPath string) bool {
// We would just compare the pattern against r.URL.Path,
// but the pattern contains %, indicating that we should
// compare at least some part of the path in raw/escaped
// space, not normalized space; so we build the string we
// will compare against by adding the normalized parts
// of the path, then switching to the escaped parts where
// the pattern hints to us wherever % is present.
var sb strings.Builder
// iterate the pattern and escaped path in lock-step;
// increment iPattern every time we consume a char from the pattern,
// increment iPath every time we consume a char from the path;
// iPattern and iPath are our cursors/iterator positions for each string
var iPattern, iPath int
for {
if iPattern >= len(matchPath) || iPath >= len(escapedPath) {
break
}
// get the next character from the request path
pathCh := string(escapedPath[iPath])
var escapedPathCh string
// normalize (decode) escape sequences
if pathCh == "%" && len(escapedPath) >= iPath+3 {
// hold onto this in case we find out the intent is to match in escaped space here;
// we lowercase it even though technically the spec says: "For consistency, URI
// producers and normalizers should use uppercase hexadecimal digits for all percent-
// encodings" (RFC 3986 section 2.1) - we lowercased the matcher pattern earlier in
// provisioning so we do the same here to gain case-insensitivity in equivalence;
// besides, this string is never shown visibly
escapedPathCh = strings.ToLower(escapedPath[iPath : iPath+3])
var err error
pathCh, err = url.PathUnescape(escapedPathCh)
if err != nil {
// should be impossible unless EscapedPath() is giving us an invalid sequence!
return false
}
iPath += 2 // escape sequence is 2 bytes longer than normal char
}
// now get the next character from the pattern
normalize := true
switch matchPath[iPattern] {
case '%':
// escape sequence
// if not a wildcard ("%*"), compare literally; consume next two bytes of pattern
if len(matchPath) >= iPattern+3 && matchPath[iPattern+1] != '*' {
sb.WriteString(escapedPathCh)
iPath++
iPattern += 2
break
}
// escaped wildcard sequence; consume next byte only ('*')
iPattern++
normalize = false
fallthrough
case '*':
// wildcard, so consume until next matching character
remaining := escapedPath[iPath:]
until := len(escapedPath) - iPath // go until end of string...
if iPattern < len(matchPath)-1 { // ...unless the * is not at the end
nextCh := matchPath[iPattern+1]
until = strings.IndexByte(remaining, nextCh)
if until == -1 {
// terminating char of wildcard span not found, so definitely no match
return false
}
}
if until == 0 {
// empty span; nothing to add on this iteration
break
}
next := remaining[:until]
if normalize {
var err error
next, err = url.PathUnescape(next)
if err != nil {
return false // should be impossible anyway
}
}
sb.WriteString(next)
iPath += until
default:
sb.WriteString(pathCh)
iPath++
}
iPattern++
}
// we can now treat rawpath globs (%*) as regular globs (*)
matchPath = strings.ReplaceAll(matchPath, "%*", "*")
// ignore error here because we can't handle it anyway=
matches, _ := path.Match(matchPath, sb.String())
return matches
}
// CELLibrary produces options that expose this matcher for use in CEL
// expression matchers.
//
// Example:
//
// expression path('*substring*', '*suffix')
func (MatchPath) CELLibrary(ctx caddy.Context) (cel.Library, error) {
return CELMatcherImpl(
// name of the macro, this is the function name that users see when writing expressions.
"path",
// name of the function that the macro will be rewritten to call.
"path_match_request_list",
// internal data type of the MatchPath value.
[]*cel.Type{cel.ListType(cel.StringType)},
// function to convert a constant list of strings to a MatchPath instance.
func(data ref.Val) (RequestMatcher, error) {
refStringList := reflect.TypeOf([]string{})
strList, err := data.ConvertToNative(refStringList)
if err != nil {
return nil, err
}
matcher := MatchPath(strList.([]string))
err = matcher.Provision(ctx)
return matcher, err
},
)
}
// UnmarshalCaddyfile implements caddyfile.Unmarshaler.
func (m *MatchPath) UnmarshalCaddyfile(d *caddyfile.Dispenser) error {
// iterate to merge multiple matchers into one
for d.Next() {
*m = append(*m, d.RemainingArgs()...)
if d.NextBlock(0) {
return d.Err("malformed path matcher: blocks are not supported")
}
}
return nil
}
// CaddyModule returns the Caddy module information.
func (MatchPathRE) CaddyModule() caddy.ModuleInfo {
return caddy.ModuleInfo{
ID: "http.matchers.path_regexp",
New: func() caddy.Module { return new(MatchPathRE) },
}
}
// Match returns true if r matches m.
func (m MatchPathRE) Match(r *http.Request) bool {
repl := r.Context().Value(caddy.ReplacerCtxKey).(*caddy.Replacer)
// Clean the path, merges doubled slashes, etc.
// This ensures maliciously crafted requests can't bypass
// the path matcher. See #4407
cleanedPath := cleanPath(r.URL.Path)
return m.MatchRegexp.Match(cleanedPath, repl)
}
// CELLibrary produces options that expose this matcher for use in CEL
// expression matchers.
//
// Example:
//
// expression path_regexp('^/bar')
func (MatchPathRE) CELLibrary(ctx caddy.Context) (cel.Library, error) {
unnamedPattern, err := CELMatcherImpl(
"path_regexp",
"path_regexp_request_string",
[]*cel.Type{cel.StringType},
func(data ref.Val) (RequestMatcher, error) {
pattern := data.(types.String)
matcher := MatchPathRE{MatchRegexp{
Name: ctx.Value(MatcherNameCtxKey).(string),
Pattern: string(pattern),
}}
err := matcher.Provision(ctx)
return matcher, err
},
)
if err != nil {
return nil, err
}
namedPattern, err := CELMatcherImpl(
"path_regexp",
"path_regexp_request_string_string",
[]*cel.Type{cel.StringType, cel.StringType},
func(data ref.Val) (RequestMatcher, error) {
refStringList := reflect.TypeOf([]string{})
params, err := data.ConvertToNative(refStringList)
if err != nil {
return nil, err
}
strParams := params.([]string)
name := strParams[0]
if name == "" {
name = ctx.Value(MatcherNameCtxKey).(string)
}
matcher := MatchPathRE{MatchRegexp{
Name: name,
Pattern: strParams[1],
}}
err = matcher.Provision(ctx)
return matcher, err
},
)
if err != nil {
return nil, err
}
envOpts := append(unnamedPattern.CompileOptions(), namedPattern.CompileOptions()...)
prgOpts := append(unnamedPattern.ProgramOptions(), namedPattern.ProgramOptions()...)
return NewMatcherCELLibrary(envOpts, prgOpts), nil
}
// CaddyModule returns the Caddy module information.
func (MatchMethod) CaddyModule() caddy.ModuleInfo {
return caddy.ModuleInfo{
ID: "http.matchers.method",
New: func() caddy.Module { return new(MatchMethod) },
}
}
// UnmarshalCaddyfile implements caddyfile.Unmarshaler.
func (m *MatchMethod) UnmarshalCaddyfile(d *caddyfile.Dispenser) error {
// iterate to merge multiple matchers into one
for d.Next() {
*m = append(*m, d.RemainingArgs()...)
if d.NextBlock(0) {
return d.Err("malformed method matcher: blocks are not supported")
}
}
return nil
}
// Match returns true if r matches m.
func (m MatchMethod) Match(r *http.Request) bool {
return slices.Contains(m, r.Method)
}
// CELLibrary produces options that expose this matcher for use in CEL
// expression matchers.
//
// Example:
//
// expression method('PUT', 'POST')
func (MatchMethod) CELLibrary(_ caddy.Context) (cel.Library, error) {
return CELMatcherImpl(
"method",
"method_request_list",
[]*cel.Type{cel.ListType(cel.StringType)},
func(data ref.Val) (RequestMatcher, error) {
refStringList := reflect.TypeOf([]string{})
strList, err := data.ConvertToNative(refStringList)
if err != nil {
return nil, err
}
return MatchMethod(strList.([]string)), nil
},
)
}
// CaddyModule returns the Caddy module information.
func (MatchQuery) CaddyModule() caddy.ModuleInfo {
return caddy.ModuleInfo{
ID: "http.matchers.query",
New: func() caddy.Module { return new(MatchQuery) },
}
}
// UnmarshalCaddyfile implements caddyfile.Unmarshaler.
func (m *MatchQuery) UnmarshalCaddyfile(d *caddyfile.Dispenser) error {
if *m == nil {
*m = make(map[string][]string)
}
// iterate to merge multiple matchers into one
for d.Next() {
for _, query := range d.RemainingArgs() {
if query == "" {
continue
}
before, after, found := strings.Cut(query, "=")
if !found {
return d.Errf("malformed query matcher token: %s; must be in param=val format", d.Val())
}
url.Values(*m).Add(before, after)
}
if d.NextBlock(0) {
return d.Err("malformed query matcher: blocks are not supported")
}
}
return nil
}
// Match returns true if r matches m. An empty m matches an empty query string.
func (m MatchQuery) Match(r *http.Request) bool {
// If no query keys are configured, this only
// matches an empty query string.
if len(m) == 0 {
return len(r.URL.Query()) == 0
}
repl := r.Context().Value(caddy.ReplacerCtxKey).(*caddy.Replacer)
// parse query string just once, for efficiency
parsed, err := url.ParseQuery(r.URL.RawQuery)
if err != nil {
// Illegal query string. Likely bad escape sequence or unescaped literals.
// Note that semicolons in query string have a controversial history. Summaries:
// - https://github.com/golang/go/issues/50034
// - https://github.com/golang/go/issues/25192
// Despite the URL WHATWG spec mandating the use of & separators for query strings,
// every URL parser implementation is different, and Filippo Valsorda rightly wrote:
// "Relying on parser alignment for security is doomed." Overall conclusion is that
// splitting on & and rejecting ; in key=value pairs is safer than accepting raw ;.
// We regard the Go team's decision as sound and thus reject malformed query strings.
return false
}
// Count the amount of matched keys, to ensure we AND
// between all configured query keys; all keys must
// match at least one value.
matchedKeys := 0
for param, vals := range m {
param = repl.ReplaceAll(param, "")
paramVal, found := parsed[param]
if !found {
return false
}
for _, v := range vals {
v = repl.ReplaceAll(v, "")
if slices.Contains(paramVal, v) || v == "*" {
matchedKeys++
break
}
}
}
return matchedKeys == len(m)
}
// CELLibrary produces options that expose this matcher for use in CEL
// expression matchers.
//
// Example:
//
// expression query({'sort': 'asc'}) || query({'foo': ['*bar*', 'baz']})
func (MatchQuery) CELLibrary(_ caddy.Context) (cel.Library, error) {
return CELMatcherImpl(
"query",
"query_matcher_request_map",
[]*cel.Type{CELTypeJSON},
func(data ref.Val) (RequestMatcher, error) {
mapStrListStr, err := CELValueToMapStrList(data)
if err != nil {
return nil, err
}
return MatchQuery(url.Values(mapStrListStr)), nil
},
)
}
// CaddyModule returns the Caddy module information.
func (MatchHeader) CaddyModule() caddy.ModuleInfo {
return caddy.ModuleInfo{
ID: "http.matchers.header",
New: func() caddy.Module { return new(MatchHeader) },
}
}
// UnmarshalCaddyfile implements caddyfile.Unmarshaler.
func (m *MatchHeader) UnmarshalCaddyfile(d *caddyfile.Dispenser) error {
if *m == nil {
*m = make(map[string][]string)
}
// iterate to merge multiple matchers into one
for d.Next() {
var field, val string
if !d.Args(&field) {
return d.Errf("malformed header matcher: expected field")
}
if strings.HasPrefix(field, "!") {
if len(field) == 1 {
return d.Errf("malformed header matcher: must have field name following ! character")
}
field = field[1:]
headers := *m
headers[field] = nil
m = &headers
if d.NextArg() {
return d.Errf("malformed header matcher: null matching headers cannot have a field value")
}
} else {
if !d.NextArg() {
return d.Errf("malformed header matcher: expected both field and value")
}
// If multiple header matchers with the same header field are defined,
// we want to add the existing to the list of headers (will be OR'ed)
val = d.Val()
http.Header(*m).Add(field, val)
}
if d.NextBlock(0) {
return d.Err("malformed header matcher: blocks are not supported")
}
}
return nil
}
// Match returns true if r matches m.
func (m MatchHeader) Match(r *http.Request) bool {
repl := r.Context().Value(caddy.ReplacerCtxKey).(*caddy.Replacer)
return matchHeaders(r.Header, http.Header(m), r.Host, repl)
}
// CELLibrary produces options that expose this matcher for use in CEL
// expression matchers.
//
// Example:
//
// expression header({'content-type': 'image/png'})
// expression header({'foo': ['bar', 'baz']}) // match bar or baz
func (MatchHeader) CELLibrary(_ caddy.Context) (cel.Library, error) {
return CELMatcherImpl(
"header",
"header_matcher_request_map",
[]*cel.Type{CELTypeJSON},
func(data ref.Val) (RequestMatcher, error) {
mapStrListStr, err := CELValueToMapStrList(data)
if err != nil {
return nil, err
}
return MatchHeader(http.Header(mapStrListStr)), nil
},
)
}
// getHeaderFieldVals returns the field values for the given fieldName from input.
// The host parameter should be obtained from the http.Request.Host field since
// net/http removes it from the header map.
func getHeaderFieldVals(input http.Header, fieldName, host string) []string {
fieldName = textproto.CanonicalMIMEHeaderKey(fieldName)
if fieldName == "Host" && host != "" {
return []string{host}
}
return input[fieldName]
}
// matchHeaders returns true if input matches the criteria in against without regex.
// The host parameter should be obtained from the http.Request.Host field since
// net/http removes it from the header map.
func matchHeaders(input, against http.Header, host string, repl *caddy.Replacer) bool {
for field, allowedFieldVals := range against {
actualFieldVals := getHeaderFieldVals(input, field, host)
if allowedFieldVals != nil && len(allowedFieldVals) == 0 && actualFieldVals != nil {
// a non-nil but empty list of allowed values means
// match if the header field exists at all
continue
}
if allowedFieldVals == nil && actualFieldVals == nil {
// a nil list means match if the header does not exist at all
continue
}
var match bool
fieldVals:
for _, actualFieldVal := range actualFieldVals {
for _, allowedFieldVal := range allowedFieldVals {
if repl != nil {
allowedFieldVal = repl.ReplaceAll(allowedFieldVal, "")
}
switch {
case allowedFieldVal == "*":
match = true
case strings.HasPrefix(allowedFieldVal, "*") && strings.HasSuffix(allowedFieldVal, "*"):
match = strings.Contains(actualFieldVal, allowedFieldVal[1:len(allowedFieldVal)-1])
case strings.HasPrefix(allowedFieldVal, "*"):
match = strings.HasSuffix(actualFieldVal, allowedFieldVal[1:])
case strings.HasSuffix(allowedFieldVal, "*"):
match = strings.HasPrefix(actualFieldVal, allowedFieldVal[:len(allowedFieldVal)-1])
default:
match = actualFieldVal == allowedFieldVal
}
if match {
break fieldVals
}
}
}
if !match {
return false
}
}
return true
}
// CaddyModule returns the Caddy module information.
func (MatchHeaderRE) CaddyModule() caddy.ModuleInfo {
return caddy.ModuleInfo{
ID: "http.matchers.header_regexp",
New: func() caddy.Module { return new(MatchHeaderRE) },
}
}
// UnmarshalCaddyfile implements caddyfile.Unmarshaler.
func (m *MatchHeaderRE) UnmarshalCaddyfile(d *caddyfile.Dispenser) error {
if *m == nil {
*m = make(map[string]*MatchRegexp)
}
// iterate to merge multiple matchers into one
for d.Next() {
var first, second, third string
if !d.Args(&first, &second) {
return d.ArgErr()
}
var name, field, val string
if d.Args(&third) {
name = first
field = second
val = third
} else {
field = first
val = second
}
// Default to the named matcher's name, if no regexp name is provided
if name == "" {
name = d.GetContextString(caddyfile.MatcherNameCtxKey)
}
// If there's already a pattern for this field
// then we would end up overwriting the old one
if (*m)[field] != nil {
return d.Errf("header_regexp matcher can only be used once per named matcher, per header field: %s", field)
}
(*m)[field] = &MatchRegexp{Pattern: val, Name: name}
if d.NextBlock(0) {
return d.Err("malformed header_regexp matcher: blocks are not supported")
}
}
return nil
}
// Match returns true if r matches m.
func (m MatchHeaderRE) Match(r *http.Request) bool {
for field, rm := range m {
actualFieldVals := getHeaderFieldVals(r.Header, field, r.Host)
match := false
fieldVal:
for _, actualFieldVal := range actualFieldVals {
repl := r.Context().Value(caddy.ReplacerCtxKey).(*caddy.Replacer)
if rm.Match(actualFieldVal, repl) {
match = true
break fieldVal
}
}
if !match {
return false
}
}
return true
}
// Provision compiles m's regular expressions.
func (m MatchHeaderRE) Provision(ctx caddy.Context) error {
for _, rm := range m {
err := rm.Provision(ctx)
if err != nil {
return err
}
}
return nil
}
// Validate validates m's regular expressions.
func (m MatchHeaderRE) Validate() error {
for _, rm := range m {
err := rm.Validate()
if err != nil {
return err
}
}
return nil
}
// CELLibrary produces options that expose this matcher for use in CEL
// expression matchers.
//
// Example:
//
// expression header_regexp('foo', 'Field', 'fo+')
func (MatchHeaderRE) CELLibrary(ctx caddy.Context) (cel.Library, error) {
unnamedPattern, err := CELMatcherImpl(
"header_regexp",
"header_regexp_request_string_string",
[]*cel.Type{cel.StringType, cel.StringType},
func(data ref.Val) (RequestMatcher, error) {
refStringList := reflect.TypeOf([]string{})
params, err := data.ConvertToNative(refStringList)
if err != nil {
return nil, err
}
strParams := params.([]string)
matcher := MatchHeaderRE{}
matcher[strParams[0]] = &MatchRegexp{
Pattern: strParams[1],
Name: ctx.Value(MatcherNameCtxKey).(string),
}
err = matcher.Provision(ctx)
return matcher, err
},
)
if err != nil {
return nil, err
}
namedPattern, err := CELMatcherImpl(
"header_regexp",
"header_regexp_request_string_string_string",
[]*cel.Type{cel.StringType, cel.StringType, cel.StringType},
func(data ref.Val) (RequestMatcher, error) {
refStringList := reflect.TypeOf([]string{})
params, err := data.ConvertToNative(refStringList)
if err != nil {
return nil, err
}
strParams := params.([]string)
name := strParams[0]
if name == "" {
name = ctx.Value(MatcherNameCtxKey).(string)
}
matcher := MatchHeaderRE{}
matcher[strParams[1]] = &MatchRegexp{
Pattern: strParams[2],
Name: name,
}
err = matcher.Provision(ctx)
return matcher, err
},
)
if err != nil {
return nil, err
}
envOpts := append(unnamedPattern.CompileOptions(), namedPattern.CompileOptions()...)
prgOpts := append(unnamedPattern.ProgramOptions(), namedPattern.ProgramOptions()...)
return NewMatcherCELLibrary(envOpts, prgOpts), nil
}
// CaddyModule returns the Caddy module information.
func (MatchProtocol) CaddyModule() caddy.ModuleInfo {
return caddy.ModuleInfo{
ID: "http.matchers.protocol",
New: func() caddy.Module { return new(MatchProtocol) },
}
}
// Match returns true if r matches m.
func (m MatchProtocol) Match(r *http.Request) bool {
switch string(m) {
case "grpc":
return strings.HasPrefix(r.Header.Get("content-type"), "application/grpc")
case "https":
return r.TLS != nil
case "http":
return r.TLS == nil
case "http/1.0":
return r.ProtoMajor == 1 && r.ProtoMinor == 0
case "http/1.0+":
return r.ProtoAtLeast(1, 0)
case "http/1.1":
return r.ProtoMajor == 1 && r.ProtoMinor == 1
case "http/1.1+":
return r.ProtoAtLeast(1, 1)
case "http/2":
return r.ProtoMajor == 2
case "http/2+":
return r.ProtoAtLeast(2, 0)
case "http/3":
return r.ProtoMajor == 3
case "http/3+":
return r.ProtoAtLeast(3, 0)
}
return false
}
// UnmarshalCaddyfile implements caddyfile.Unmarshaler.
func (m *MatchProtocol) UnmarshalCaddyfile(d *caddyfile.Dispenser) error {
// iterate to merge multiple matchers into one
for d.Next() {
var proto string
if !d.Args(&proto) {
return d.Err("expected exactly one protocol")
}
*m = MatchProtocol(proto)
}
return nil
}
// CELLibrary produces options that expose this matcher for use in CEL
// expression matchers.
//
// Example:
//
// expression protocol('https')
func (MatchProtocol) CELLibrary(_ caddy.Context) (cel.Library, error) {
return CELMatcherImpl(
"protocol",
"protocol_request_string",
[]*cel.Type{cel.StringType},
func(data ref.Val) (RequestMatcher, error) {
protocolStr, ok := data.(types.String)
if !ok {
return nil, errors.New("protocol argument was not a string")
}
return MatchProtocol(strings.ToLower(string(protocolStr))), nil
},
)
}
// CaddyModule returns the Caddy module information.
func (MatchTLS) CaddyModule() caddy.ModuleInfo {
return caddy.ModuleInfo{
ID: "http.matchers.tls",
New: func() caddy.Module { return new(MatchTLS) },
}
}
// Match returns true if r matches m.
func (m MatchTLS) Match(r *http.Request) bool {
if r.TLS == nil {
return false
}
if m.HandshakeComplete != nil {
if (!*m.HandshakeComplete && r.TLS.HandshakeComplete) ||
(*m.HandshakeComplete && !r.TLS.HandshakeComplete) {
return false
}
}
return true
}
// UnmarshalCaddyfile parses Caddyfile tokens for this matcher. Syntax:
//
// ... tls [early_data]
//
// EXPERIMENTAL SYNTAX: Subject to change.
func (m *MatchTLS) UnmarshalCaddyfile(d *caddyfile.Dispenser) error {
// iterate to merge multiple matchers into one
for d.Next() {
if d.NextArg() {
switch d.Val() {
case "early_data":
var false bool
m.HandshakeComplete = &false
}
}
if d.NextArg() {
return d.ArgErr()
}
if d.NextBlock(0) {
return d.Err("malformed tls matcher: blocks are not supported yet")
}
}
return nil
}
// CaddyModule returns the Caddy module information.
func (MatchNot) CaddyModule() caddy.ModuleInfo {
return caddy.ModuleInfo{
ID: "http.matchers.not",
New: func() caddy.Module { return new(MatchNot) },
}
}
// UnmarshalCaddyfile implements caddyfile.Unmarshaler.
func (m *MatchNot) UnmarshalCaddyfile(d *caddyfile.Dispenser) error {
// iterate to merge multiple matchers into one
for d.Next() {
matcherSet, err := ParseCaddyfileNestedMatcherSet(d)
if err != nil {
return err
}
m.MatcherSetsRaw = append(m.MatcherSetsRaw, matcherSet)
}
return nil
}
// UnmarshalJSON satisfies json.Unmarshaler. It puts the JSON
// bytes directly into m's MatcherSetsRaw field.
func (m *MatchNot) UnmarshalJSON(data []byte) error {
return json.Unmarshal(data, &m.MatcherSetsRaw)
}
// MarshalJSON satisfies json.Marshaler by marshaling
// m's raw matcher sets.
func (m MatchNot) MarshalJSON() ([]byte, error) {
return json.Marshal(m.MatcherSetsRaw)
}
// Provision loads the matcher modules to be negated.
func (m *MatchNot) Provision(ctx caddy.Context) error {
matcherSets, err := ctx.LoadModule(m, "MatcherSetsRaw")
if err != nil {
return fmt.Errorf("loading matcher sets: %v", err)
}
for _, modMap := range matcherSets.([]map[string]any) {
var ms MatcherSet
for _, modIface := range modMap {
ms = append(ms, modIface.(RequestMatcher))
}
m.MatcherSets = append(m.MatcherSets, ms)
}
return nil
}
// Match returns true if r matches m. Since this matcher negates
// the embedded matchers, false is returned if any of its matcher
// sets return true.
func (m MatchNot) Match(r *http.Request) bool {
for _, ms := range m.MatcherSets {
if ms.Match(r) {
return false
}
}
return true
}
// MatchRegexp is an embedable type for matching
// using regular expressions. It adds placeholders
// to the request's replacer.
type MatchRegexp struct {
// A unique name for this regular expression. Optional,
// but useful to prevent overwriting captures from other
// regexp matchers.
Name string `json:"name,omitempty"`
// The regular expression to evaluate, in RE2 syntax,
// which is the same general syntax used by Go, Perl,
// and Python. For details, see
// [Go's regexp package](https://golang.org/pkg/regexp/).
// Captures are accessible via placeholders. Unnamed
// capture groups are exposed as their numeric, 1-based
// index, while named capture groups are available by
// the capture group name.
Pattern string `json:"pattern"`
compiled *regexp.Regexp
}
// Provision compiles the regular expression.
func (mre *MatchRegexp) Provision(caddy.Context) error {
re, err := regexp.Compile(mre.Pattern)
if err != nil {
return fmt.Errorf("compiling matcher regexp %s: %v", mre.Pattern, err)
}
mre.compiled = re
return nil
}
// Validate ensures mre is set up correctly.
func (mre *MatchRegexp) Validate() error {
if mre.Name != "" && !wordRE.MatchString(mre.Name) {
return fmt.Errorf("invalid regexp name (must contain only word characters): %s", mre.Name)
}
return nil
}
// Match returns true if input matches the compiled regular
// expression in mre. It sets values on the replacer repl
// associated with capture groups, using the given scope
// (namespace).
func (mre *MatchRegexp) Match(input string, repl *caddy.Replacer) bool {
matches := mre.compiled.FindStringSubmatch(input)
if matches == nil {
return false
}
// save all capture groups, first by index
for i, match := range matches {
keySuffix := "." + strconv.Itoa(i)
if mre.Name != "" {
repl.Set(regexpPlaceholderPrefix+"."+mre.Name+keySuffix, match)
}
repl.Set(regexpPlaceholderPrefix+keySuffix, match)
}
// then by name
for i, name := range mre.compiled.SubexpNames() {
// skip the first element (the full match), and empty names
if i == 0 || name == "" {
continue
}
keySuffix := "." + name
if mre.Name != "" {
repl.Set(regexpPlaceholderPrefix+"."+mre.Name+keySuffix, matches[i])
}
repl.Set(regexpPlaceholderPrefix+keySuffix, matches[i])
}
return true
}
// UnmarshalCaddyfile implements caddyfile.Unmarshaler.
func (mre *MatchRegexp) UnmarshalCaddyfile(d *caddyfile.Dispenser) error {
// iterate to merge multiple matchers into one
for d.Next() {
// If this is the second iteration of the loop
// then there's more than one path_regexp matcher
// and we would end up overwriting the old one
if mre.Pattern != "" {
return d.Err("regular expression can only be used once per named matcher")
}
args := d.RemainingArgs()
switch len(args) {
case 1:
mre.Pattern = args[0]
case 2:
mre.Name = args[0]
mre.Pattern = args[1]
default:
return d.ArgErr()
}
// Default to the named matcher's name, if no regexp name is provided
if mre.Name == "" {
mre.Name = d.GetContextString(caddyfile.MatcherNameCtxKey)
}
if d.NextBlock(0) {
return d.Err("malformed path_regexp matcher: blocks are not supported")
}
}
return nil
}
// ParseCaddyfileNestedMatcher parses the Caddyfile tokens for a nested
// matcher set, and returns its raw module map value.
func ParseCaddyfileNestedMatcherSet(d *caddyfile.Dispenser) (caddy.ModuleMap, error) {
matcherMap := make(map[string]RequestMatcher)
// in case there are multiple instances of the same matcher, concatenate
// their tokens (we expect that UnmarshalCaddyfile should be able to
// handle more than one segment); otherwise, we'd overwrite other
// instances of the matcher in this set
tokensByMatcherName := make(map[string][]caddyfile.Token)
for nesting := d.Nesting(); d.NextArg() || d.NextBlock(nesting); {
matcherName := d.Val()
tokensByMatcherName[matcherName] = append(tokensByMatcherName[matcherName], d.NextSegment()...)
}
for matcherName, tokens := range tokensByMatcherName {
mod, err := caddy.GetModule("http.matchers." + matcherName)
if err != nil {
return nil, d.Errf("getting matcher module '%s': %v", matcherName, err)
}
unm, ok := mod.New().(caddyfile.Unmarshaler)
if !ok {
return nil, d.Errf("matcher module '%s' is not a Caddyfile unmarshaler", matcherName)
}
err = unm.UnmarshalCaddyfile(caddyfile.NewDispenser(tokens))
if err != nil {
return nil, err
}
rm, ok := unm.(RequestMatcher)
if !ok {
return nil, fmt.Errorf("matcher module '%s' is not a request matcher", matcherName)
}
matcherMap[matcherName] = rm
}
// we should now have a functional matcher, but we also
// need to be able to marshal as JSON, otherwise config
// adaptation will be missing the matchers!
matcherSet := make(caddy.ModuleMap)
for name, matcher := range matcherMap {
jsonBytes, err := json.Marshal(matcher)
if err != nil {
return nil, fmt.Errorf("marshaling %T matcher: %v", matcher, err)
}
matcherSet[name] = jsonBytes
}
return matcherSet, nil
}
var wordRE = regexp.MustCompile(`\w+`)
const regexpPlaceholderPrefix = "http.regexp"
// MatcherErrorVarKey is the key used for the variable that
// holds an optional error emitted from a request matcher,
// to short-circuit the handler chain, since matchers cannot
// return errors via the RequestMatcher interface.
const MatcherErrorVarKey = "matchers.error"
// Interface guards
var (
_ RequestMatcher = (*MatchHost)(nil)
_ caddy.Provisioner = (*MatchHost)(nil)
_ RequestMatcher = (*MatchPath)(nil)
_ RequestMatcher = (*MatchPathRE)(nil)
_ caddy.Provisioner = (*MatchPathRE)(nil)
_ RequestMatcher = (*MatchMethod)(nil)
_ RequestMatcher = (*MatchQuery)(nil)
_ RequestMatcher = (*MatchHeader)(nil)
_ RequestMatcher = (*MatchHeaderRE)(nil)
_ caddy.Provisioner = (*MatchHeaderRE)(nil)
_ RequestMatcher = (*MatchProtocol)(nil)
_ RequestMatcher = (*MatchNot)(nil)
_ caddy.Provisioner = (*MatchNot)(nil)
_ caddy.Provisioner = (*MatchRegexp)(nil)
_ caddyfile.Unmarshaler = (*MatchHost)(nil)
_ caddyfile.Unmarshaler = (*MatchPath)(nil)
_ caddyfile.Unmarshaler = (*MatchPathRE)(nil)
_ caddyfile.Unmarshaler = (*MatchMethod)(nil)
_ caddyfile.Unmarshaler = (*MatchQuery)(nil)
_ caddyfile.Unmarshaler = (*MatchHeader)(nil)
_ caddyfile.Unmarshaler = (*MatchHeaderRE)(nil)
_ caddyfile.Unmarshaler = (*MatchProtocol)(nil)
_ caddyfile.Unmarshaler = (*VarsMatcher)(nil)
_ caddyfile.Unmarshaler = (*MatchVarsRE)(nil)
_ CELLibraryProducer = (*MatchHost)(nil)
_ CELLibraryProducer = (*MatchPath)(nil)
_ CELLibraryProducer = (*MatchPathRE)(nil)
_ CELLibraryProducer = (*MatchMethod)(nil)
_ CELLibraryProducer = (*MatchQuery)(nil)
_ CELLibraryProducer = (*MatchHeader)(nil)
_ CELLibraryProducer = (*MatchHeaderRE)(nil)
_ CELLibraryProducer = (*MatchProtocol)(nil)
_ CELLibraryProducer = (*VarsMatcher)(nil)
_ CELLibraryProducer = (*MatchVarsRE)(nil)
_ json.Marshaler = (*MatchNot)(nil)
_ json.Unmarshaler = (*MatchNot)(nil)
)