caddy/usagepool.go

228 lines
6.6 KiB
Go

// Copyright 2015 Matthew Holt and The Caddy Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package caddy
import (
"fmt"
"sync"
"sync/atomic"
)
// UsagePool is a thread-safe map that pools values
// based on usage (reference counting). Values are
// only inserted if they do not already exist. There
// are two ways to add values to the pool:
//
// 1. LoadOrStore will increment usage and store the
// value immediately if it does not already exist.
// 2. LoadOrNew will atomically check for existence
// and construct the value immediately if it does
// not already exist, or increment the usage
// otherwise, then store that value in the pool.
// When the constructed value is finally deleted
// from the pool (when its usage reaches 0), it
// will be cleaned up by calling Destruct().
//
// The use of LoadOrNew allows values to be created
// and reused and finally cleaned up only once, even
// though they may have many references throughout
// their lifespan. This is helpful, for example, when
// sharing thread-safe io.Writers that you only want
// to open and close once.
//
// There is no way to overwrite existing keys in the
// pool without first deleting it as many times as it
// was stored. Deleting too many times will panic.
//
// The implementation does not use a sync.Pool because
// UsagePool needs additional atomicity to run the
// constructor functions when creating a new value when
// LoadOrNew is used. (We could probably use sync.Pool
// but we'd still have to layer our own additional locks
// on top.)
//
// An empty UsagePool is NOT safe to use; always call
// NewUsagePool() to make a new one.
type UsagePool struct {
sync.RWMutex
pool map[any]*usagePoolVal
}
// NewUsagePool returns a new usage pool that is ready to use.
func NewUsagePool() *UsagePool {
return &UsagePool{
pool: make(map[any]*usagePoolVal),
}
}
// LoadOrNew loads the value associated with key from the pool if it
// already exists. If the key doesn't exist, it will call construct
// to create a new value and then stores that in the pool. An error
// is only returned if the constructor returns an error. The loaded
// or constructed value is returned. The loaded return value is true
// if the value already existed and was loaded, or false if it was
// newly constructed.
func (up *UsagePool) LoadOrNew(key any, construct Constructor) (value any, loaded bool, err error) {
var upv *usagePoolVal
up.Lock()
upv, loaded = up.pool[key]
if loaded {
atomic.AddInt32(&upv.refs, 1)
up.Unlock()
upv.RLock()
value = upv.value
err = upv.err
upv.RUnlock()
} else {
upv = &usagePoolVal{refs: 1}
upv.Lock()
up.pool[key] = upv
up.Unlock()
value, err = construct()
if err == nil {
upv.value = value
} else {
upv.err = err
up.Lock()
// this *should* be safe, I think, because we have a
// write lock on upv, but we might also need to ensure
// that upv.err is nil before doing this, since we
// released the write lock on up during construct...
// but then again it's also after midnight...
delete(up.pool, key)
up.Unlock()
}
upv.Unlock()
}
return
}
// LoadOrStore loads the value associated with key from the pool if it
// already exists, or stores it if it does not exist. It returns the
// value that was either loaded or stored, and true if the value already
// existed and was loaded, false if the value didn't exist and was stored.
func (up *UsagePool) LoadOrStore(key, val any) (value any, loaded bool) {
var upv *usagePoolVal
up.Lock()
upv, loaded = up.pool[key]
if loaded {
atomic.AddInt32(&upv.refs, 1)
up.Unlock()
upv.Lock()
if upv.err == nil {
value = upv.value
} else {
upv.value = val
upv.err = nil
}
upv.Unlock()
} else {
upv = &usagePoolVal{refs: 1, value: val}
up.pool[key] = upv
up.Unlock()
value = val
}
return
}
// Range iterates the pool similarly to how sync.Map.Range() does:
// it calls f for every key in the pool, and if f returns false,
// iteration is stopped. Ranging does not affect usage counts.
//
// This method is somewhat naive and acquires a read lock on the
// entire pool during iteration, so do your best to make f() really
// fast, m'kay?
func (up *UsagePool) Range(f func(key, value any) bool) {
up.RLock()
defer up.RUnlock()
for key, upv := range up.pool {
upv.RLock()
if upv.err != nil {
upv.RUnlock()
continue
}
val := upv.value
upv.RUnlock()
if !f(key, val) {
break
}
}
}
// Delete decrements the usage count for key and removes the
// value from the underlying map if the usage is 0. It returns
// true if the usage count reached 0 and the value was deleted.
// It panics if the usage count drops below 0; always call
// Delete precisely as many times as LoadOrStore.
func (up *UsagePool) Delete(key any) (deleted bool, err error) {
up.Lock()
upv, ok := up.pool[key]
if !ok {
up.Unlock()
return false, nil
}
refs := atomic.AddInt32(&upv.refs, -1)
if refs == 0 {
delete(up.pool, key)
up.Unlock()
upv.RLock()
val := upv.value
upv.RUnlock()
if destructor, ok := val.(Destructor); ok {
err = destructor.Destruct()
}
deleted = true
} else {
up.Unlock()
if refs < 0 {
panic(fmt.Sprintf("deleted more than stored: %#v (usage: %d)",
upv.value, upv.refs))
}
}
return
}
// References returns the number of references (count of usages) to a
// key in the pool, and true if the key exists, or false otherwise.
func (up *UsagePool) References(key any) (int, bool) {
up.RLock()
upv, loaded := up.pool[key]
up.RUnlock()
if loaded {
// I wonder if it'd be safer to read this value during
// our lock on the UsagePool... guess we'll see...
refs := atomic.LoadInt32(&upv.refs)
return int(refs), true
}
return 0, false
}
// Constructor is a function that returns a new value
// that can destruct itself when it is no longer needed.
type Constructor func() (Destructor, error)
// Destructor is a value that can clean itself up when
// it is deallocated.
type Destructor interface {
Destruct() error
}
type usagePoolVal struct {
refs int32 // accessed atomically; must be 64-bit aligned for 32-bit systems
value any
err error
sync.RWMutex
}