git/xdiff/xdiffi.c

1090 lines
28 KiB
C

/*
* LibXDiff by Davide Libenzi ( File Differential Library )
* Copyright (C) 2003 Davide Libenzi
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see
* <http://www.gnu.org/licenses/>.
*
* Davide Libenzi <davidel@xmailserver.org>
*
*/
#include "xinclude.h"
#define XDL_MAX_COST_MIN 256
#define XDL_HEUR_MIN_COST 256
#define XDL_LINE_MAX (long)((1UL << (CHAR_BIT * sizeof(long) - 1)) - 1)
#define XDL_SNAKE_CNT 20
#define XDL_K_HEUR 4
typedef struct s_xdpsplit {
long i1, i2;
int min_lo, min_hi;
} xdpsplit_t;
/*
* See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers.
* Basically considers a "box" (off1, off2, lim1, lim2) and scan from both
* the forward diagonal starting from (off1, off2) and the backward diagonal
* starting from (lim1, lim2). If the K values on the same diagonal crosses
* returns the furthest point of reach. We might encounter expensive edge cases
* using this algorithm, so a little bit of heuristic is needed to cut the
* search and to return a suboptimal point.
*/
static long xdl_split(unsigned long const *ha1, long off1, long lim1,
unsigned long const *ha2, long off2, long lim2,
long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl,
xdalgoenv_t *xenv) {
long dmin = off1 - lim2, dmax = lim1 - off2;
long fmid = off1 - off2, bmid = lim1 - lim2;
long odd = (fmid - bmid) & 1;
long fmin = fmid, fmax = fmid;
long bmin = bmid, bmax = bmid;
long ec, d, i1, i2, prev1, best, dd, v, k;
/*
* Set initial diagonal values for both forward and backward path.
*/
kvdf[fmid] = off1;
kvdb[bmid] = lim1;
for (ec = 1;; ec++) {
int got_snake = 0;
/*
* We need to extend the diagonal "domain" by one. If the next
* values exits the box boundaries we need to change it in the
* opposite direction because (max - min) must be a power of
* two.
*
* Also we initialize the external K value to -1 so that we can
* avoid extra conditions in the check inside the core loop.
*/
if (fmin > dmin)
kvdf[--fmin - 1] = -1;
else
++fmin;
if (fmax < dmax)
kvdf[++fmax + 1] = -1;
else
--fmax;
for (d = fmax; d >= fmin; d -= 2) {
if (kvdf[d - 1] >= kvdf[d + 1])
i1 = kvdf[d - 1] + 1;
else
i1 = kvdf[d + 1];
prev1 = i1;
i2 = i1 - d;
for (; i1 < lim1 && i2 < lim2 && ha1[i1] == ha2[i2]; i1++, i2++);
if (i1 - prev1 > xenv->snake_cnt)
got_snake = 1;
kvdf[d] = i1;
if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1) {
spl->i1 = i1;
spl->i2 = i2;
spl->min_lo = spl->min_hi = 1;
return ec;
}
}
/*
* We need to extend the diagonal "domain" by one. If the next
* values exits the box boundaries we need to change it in the
* opposite direction because (max - min) must be a power of
* two.
*
* Also we initialize the external K value to -1 so that we can
* avoid extra conditions in the check inside the core loop.
*/
if (bmin > dmin)
kvdb[--bmin - 1] = XDL_LINE_MAX;
else
++bmin;
if (bmax < dmax)
kvdb[++bmax + 1] = XDL_LINE_MAX;
else
--bmax;
for (d = bmax; d >= bmin; d -= 2) {
if (kvdb[d - 1] < kvdb[d + 1])
i1 = kvdb[d - 1];
else
i1 = kvdb[d + 1] - 1;
prev1 = i1;
i2 = i1 - d;
for (; i1 > off1 && i2 > off2 && ha1[i1 - 1] == ha2[i2 - 1]; i1--, i2--);
if (prev1 - i1 > xenv->snake_cnt)
got_snake = 1;
kvdb[d] = i1;
if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) {
spl->i1 = i1;
spl->i2 = i2;
spl->min_lo = spl->min_hi = 1;
return ec;
}
}
if (need_min)
continue;
/*
* If the edit cost is above the heuristic trigger and if
* we got a good snake, we sample current diagonals to see
* if some of them have reached an "interesting" path. Our
* measure is a function of the distance from the diagonal
* corner (i1 + i2) penalized with the distance from the
* mid diagonal itself. If this value is above the current
* edit cost times a magic factor (XDL_K_HEUR) we consider
* it interesting.
*/
if (got_snake && ec > xenv->heur_min) {
for (best = 0, d = fmax; d >= fmin; d -= 2) {
dd = d > fmid ? d - fmid: fmid - d;
i1 = kvdf[d];
i2 = i1 - d;
v = (i1 - off1) + (i2 - off2) - dd;
if (v > XDL_K_HEUR * ec && v > best &&
off1 + xenv->snake_cnt <= i1 && i1 < lim1 &&
off2 + xenv->snake_cnt <= i2 && i2 < lim2) {
for (k = 1; ha1[i1 - k] == ha2[i2 - k]; k++)
if (k == xenv->snake_cnt) {
best = v;
spl->i1 = i1;
spl->i2 = i2;
break;
}
}
}
if (best > 0) {
spl->min_lo = 1;
spl->min_hi = 0;
return ec;
}
for (best = 0, d = bmax; d >= bmin; d -= 2) {
dd = d > bmid ? d - bmid: bmid - d;
i1 = kvdb[d];
i2 = i1 - d;
v = (lim1 - i1) + (lim2 - i2) - dd;
if (v > XDL_K_HEUR * ec && v > best &&
off1 < i1 && i1 <= lim1 - xenv->snake_cnt &&
off2 < i2 && i2 <= lim2 - xenv->snake_cnt) {
for (k = 0; ha1[i1 + k] == ha2[i2 + k]; k++)
if (k == xenv->snake_cnt - 1) {
best = v;
spl->i1 = i1;
spl->i2 = i2;
break;
}
}
}
if (best > 0) {
spl->min_lo = 0;
spl->min_hi = 1;
return ec;
}
}
/*
* Enough is enough. We spent too much time here and now we
* collect the furthest reaching path using the (i1 + i2)
* measure.
*/
if (ec >= xenv->mxcost) {
long fbest, fbest1, bbest, bbest1;
fbest = fbest1 = -1;
for (d = fmax; d >= fmin; d -= 2) {
i1 = XDL_MIN(kvdf[d], lim1);
i2 = i1 - d;
if (lim2 < i2)
i1 = lim2 + d, i2 = lim2;
if (fbest < i1 + i2) {
fbest = i1 + i2;
fbest1 = i1;
}
}
bbest = bbest1 = XDL_LINE_MAX;
for (d = bmax; d >= bmin; d -= 2) {
i1 = XDL_MAX(off1, kvdb[d]);
i2 = i1 - d;
if (i2 < off2)
i1 = off2 + d, i2 = off2;
if (i1 + i2 < bbest) {
bbest = i1 + i2;
bbest1 = i1;
}
}
if ((lim1 + lim2) - bbest < fbest - (off1 + off2)) {
spl->i1 = fbest1;
spl->i2 = fbest - fbest1;
spl->min_lo = 1;
spl->min_hi = 0;
} else {
spl->i1 = bbest1;
spl->i2 = bbest - bbest1;
spl->min_lo = 0;
spl->min_hi = 1;
}
return ec;
}
}
}
/*
* Rule: "Divide et Impera" (divide & conquer). Recursively split the box in
* sub-boxes by calling the box splitting function. Note that the real job
* (marking changed lines) is done in the two boundary reaching checks.
*/
int xdl_recs_cmp(diffdata_t *dd1, long off1, long lim1,
diffdata_t *dd2, long off2, long lim2,
long *kvdf, long *kvdb, int need_min, xdalgoenv_t *xenv) {
unsigned long const *ha1 = dd1->ha, *ha2 = dd2->ha;
/*
* Shrink the box by walking through each diagonal snake (SW and NE).
*/
for (; off1 < lim1 && off2 < lim2 && ha1[off1] == ha2[off2]; off1++, off2++);
for (; off1 < lim1 && off2 < lim2 && ha1[lim1 - 1] == ha2[lim2 - 1]; lim1--, lim2--);
/*
* If one dimension is empty, then all records on the other one must
* be obviously changed.
*/
if (off1 == lim1) {
char *rchg2 = dd2->rchg;
long *rindex2 = dd2->rindex;
for (; off2 < lim2; off2++)
rchg2[rindex2[off2]] = 1;
} else if (off2 == lim2) {
char *rchg1 = dd1->rchg;
long *rindex1 = dd1->rindex;
for (; off1 < lim1; off1++)
rchg1[rindex1[off1]] = 1;
} else {
xdpsplit_t spl;
spl.i1 = spl.i2 = 0;
/*
* Divide ...
*/
if (xdl_split(ha1, off1, lim1, ha2, off2, lim2, kvdf, kvdb,
need_min, &spl, xenv) < 0) {
return -1;
}
/*
* ... et Impera.
*/
if (xdl_recs_cmp(dd1, off1, spl.i1, dd2, off2, spl.i2,
kvdf, kvdb, spl.min_lo, xenv) < 0 ||
xdl_recs_cmp(dd1, spl.i1, lim1, dd2, spl.i2, lim2,
kvdf, kvdb, spl.min_hi, xenv) < 0) {
return -1;
}
}
return 0;
}
int xdl_do_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
xdfenv_t *xe) {
long ndiags;
long *kvd, *kvdf, *kvdb;
xdalgoenv_t xenv;
diffdata_t dd1, dd2;
int res;
if (xdl_prepare_env(mf1, mf2, xpp, xe) < 0)
return -1;
if (XDF_DIFF_ALG(xpp->flags) == XDF_PATIENCE_DIFF) {
res = xdl_do_patience_diff(xpp, xe);
goto out;
}
if (XDF_DIFF_ALG(xpp->flags) == XDF_HISTOGRAM_DIFF) {
res = xdl_do_histogram_diff(xpp, xe);
goto out;
}
/*
* Allocate and setup K vectors to be used by the differential
* algorithm.
*
* One is to store the forward path and one to store the backward path.
*/
ndiags = xe->xdf1.nreff + xe->xdf2.nreff + 3;
if (!XDL_ALLOC_ARRAY(kvd, 2 * ndiags + 2)) {
xdl_free_env(xe);
return -1;
}
kvdf = kvd;
kvdb = kvdf + ndiags;
kvdf += xe->xdf2.nreff + 1;
kvdb += xe->xdf2.nreff + 1;
xenv.mxcost = xdl_bogosqrt(ndiags);
if (xenv.mxcost < XDL_MAX_COST_MIN)
xenv.mxcost = XDL_MAX_COST_MIN;
xenv.snake_cnt = XDL_SNAKE_CNT;
xenv.heur_min = XDL_HEUR_MIN_COST;
dd1.nrec = xe->xdf1.nreff;
dd1.ha = xe->xdf1.ha;
dd1.rchg = xe->xdf1.rchg;
dd1.rindex = xe->xdf1.rindex;
dd2.nrec = xe->xdf2.nreff;
dd2.ha = xe->xdf2.ha;
dd2.rchg = xe->xdf2.rchg;
dd2.rindex = xe->xdf2.rindex;
res = xdl_recs_cmp(&dd1, 0, dd1.nrec, &dd2, 0, dd2.nrec,
kvdf, kvdb, (xpp->flags & XDF_NEED_MINIMAL) != 0,
&xenv);
xdl_free(kvd);
out:
if (res < 0)
xdl_free_env(xe);
return res;
}
static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2) {
xdchange_t *xch;
if (!(xch = (xdchange_t *) xdl_malloc(sizeof(xdchange_t))))
return NULL;
xch->next = xscr;
xch->i1 = i1;
xch->i2 = i2;
xch->chg1 = chg1;
xch->chg2 = chg2;
xch->ignore = 0;
return xch;
}
static int recs_match(xrecord_t *rec1, xrecord_t *rec2)
{
return (rec1->ha == rec2->ha);
}
/*
* If a line is indented more than this, get_indent() just returns this value.
* This avoids having to do absurd amounts of work for data that are not
* human-readable text, and also ensures that the output of get_indent fits
* within an int.
*/
#define MAX_INDENT 200
/*
* Return the amount of indentation of the specified line, treating TAB as 8
* columns. Return -1 if line is empty or contains only whitespace. Clamp the
* output value at MAX_INDENT.
*/
static int get_indent(xrecord_t *rec)
{
long i;
int ret = 0;
for (i = 0; i < rec->size; i++) {
char c = rec->ptr[i];
if (!XDL_ISSPACE(c))
return ret;
else if (c == ' ')
ret += 1;
else if (c == '\t')
ret += 8 - ret % 8;
/* ignore other whitespace characters */
if (ret >= MAX_INDENT)
return MAX_INDENT;
}
/* The line contains only whitespace. */
return -1;
}
/*
* If more than this number of consecutive blank rows are found, just return
* this value. This avoids requiring O(N^2) work for pathological cases, and
* also ensures that the output of score_split fits in an int.
*/
#define MAX_BLANKS 20
/* Characteristics measured about a hypothetical split position. */
struct split_measurement {
/*
* Is the split at the end of the file (aside from any blank lines)?
*/
int end_of_file;
/*
* How much is the line immediately following the split indented (or -1
* if the line is blank):
*/
int indent;
/*
* How many consecutive lines above the split are blank?
*/
int pre_blank;
/*
* How much is the nearest non-blank line above the split indented (or
* -1 if there is no such line)?
*/
int pre_indent;
/*
* How many lines after the line following the split are blank?
*/
int post_blank;
/*
* How much is the nearest non-blank line after the line following the
* split indented (or -1 if there is no such line)?
*/
int post_indent;
};
struct split_score {
/* The effective indent of this split (smaller is preferred). */
int effective_indent;
/* Penalty for this split (smaller is preferred). */
int penalty;
};
/*
* Fill m with information about a hypothetical split of xdf above line split.
*/
static void measure_split(const xdfile_t *xdf, long split,
struct split_measurement *m)
{
long i;
if (split >= xdf->nrec) {
m->end_of_file = 1;
m->indent = -1;
} else {
m->end_of_file = 0;
m->indent = get_indent(xdf->recs[split]);
}
m->pre_blank = 0;
m->pre_indent = -1;
for (i = split - 1; i >= 0; i--) {
m->pre_indent = get_indent(xdf->recs[i]);
if (m->pre_indent != -1)
break;
m->pre_blank += 1;
if (m->pre_blank == MAX_BLANKS) {
m->pre_indent = 0;
break;
}
}
m->post_blank = 0;
m->post_indent = -1;
for (i = split + 1; i < xdf->nrec; i++) {
m->post_indent = get_indent(xdf->recs[i]);
if (m->post_indent != -1)
break;
m->post_blank += 1;
if (m->post_blank == MAX_BLANKS) {
m->post_indent = 0;
break;
}
}
}
/*
* The empirically-determined weight factors used by score_split() below.
* Larger values means that the position is a less favorable place to split.
*
* Note that scores are only ever compared against each other, so multiplying
* all of these weight/penalty values by the same factor wouldn't change the
* heuristic's behavior. Still, we need to set that arbitrary scale *somehow*.
* In practice, these numbers are chosen to be large enough that they can be
* adjusted relative to each other with sufficient precision despite using
* integer math.
*/
/* Penalty if there are no non-blank lines before the split */
#define START_OF_FILE_PENALTY 1
/* Penalty if there are no non-blank lines after the split */
#define END_OF_FILE_PENALTY 21
/* Multiplier for the number of blank lines around the split */
#define TOTAL_BLANK_WEIGHT (-30)
/* Multiplier for the number of blank lines after the split */
#define POST_BLANK_WEIGHT 6
/*
* Penalties applied if the line is indented more than its predecessor
*/
#define RELATIVE_INDENT_PENALTY (-4)
#define RELATIVE_INDENT_WITH_BLANK_PENALTY 10
/*
* Penalties applied if the line is indented less than both its predecessor and
* its successor
*/
#define RELATIVE_OUTDENT_PENALTY 24
#define RELATIVE_OUTDENT_WITH_BLANK_PENALTY 17
/*
* Penalties applied if the line is indented less than its predecessor but not
* less than its successor
*/
#define RELATIVE_DEDENT_PENALTY 23
#define RELATIVE_DEDENT_WITH_BLANK_PENALTY 17
/*
* We only consider whether the sum of the effective indents for splits are
* less than (-1), equal to (0), or greater than (+1) each other. The resulting
* value is multiplied by the following weight and combined with the penalty to
* determine the better of two scores.
*/
#define INDENT_WEIGHT 60
/*
* How far do we slide a hunk at most?
*/
#define INDENT_HEURISTIC_MAX_SLIDING 100
/*
* Compute a badness score for the hypothetical split whose measurements are
* stored in m. The weight factors were determined empirically using the tools
* and corpus described in
*
* https://github.com/mhagger/diff-slider-tools
*
* Also see that project if you want to improve the weights based on, for
* example, a larger or more diverse corpus.
*/
static void score_add_split(const struct split_measurement *m, struct split_score *s)
{
/*
* A place to accumulate penalty factors (positive makes this index more
* favored):
*/
int post_blank, total_blank, indent, any_blanks;
if (m->pre_indent == -1 && m->pre_blank == 0)
s->penalty += START_OF_FILE_PENALTY;
if (m->end_of_file)
s->penalty += END_OF_FILE_PENALTY;
/*
* Set post_blank to the number of blank lines following the split,
* including the line immediately after the split:
*/
post_blank = (m->indent == -1) ? 1 + m->post_blank : 0;
total_blank = m->pre_blank + post_blank;
/* Penalties based on nearby blank lines: */
s->penalty += TOTAL_BLANK_WEIGHT * total_blank;
s->penalty += POST_BLANK_WEIGHT * post_blank;
if (m->indent != -1)
indent = m->indent;
else
indent = m->post_indent;
any_blanks = (total_blank != 0);
/* Note that the effective indent is -1 at the end of the file: */
s->effective_indent += indent;
if (indent == -1) {
/* No additional adjustments needed. */
} else if (m->pre_indent == -1) {
/* No additional adjustments needed. */
} else if (indent > m->pre_indent) {
/*
* The line is indented more than its predecessor.
*/
s->penalty += any_blanks ?
RELATIVE_INDENT_WITH_BLANK_PENALTY :
RELATIVE_INDENT_PENALTY;
} else if (indent == m->pre_indent) {
/*
* The line has the same indentation level as its predecessor.
* No additional adjustments needed.
*/
} else {
/*
* The line is indented less than its predecessor. It could be
* the block terminator of the previous block, but it could
* also be the start of a new block (e.g., an "else" block, or
* maybe the previous block didn't have a block terminator).
* Try to distinguish those cases based on what comes next:
*/
if (m->post_indent != -1 && m->post_indent > indent) {
/*
* The following line is indented more. So it is likely
* that this line is the start of a block.
*/
s->penalty += any_blanks ?
RELATIVE_OUTDENT_WITH_BLANK_PENALTY :
RELATIVE_OUTDENT_PENALTY;
} else {
/*
* That was probably the end of a block.
*/
s->penalty += any_blanks ?
RELATIVE_DEDENT_WITH_BLANK_PENALTY :
RELATIVE_DEDENT_PENALTY;
}
}
}
static int score_cmp(struct split_score *s1, struct split_score *s2)
{
/* -1 if s1.effective_indent < s2->effective_indent, etc. */
int cmp_indents = ((s1->effective_indent > s2->effective_indent) -
(s1->effective_indent < s2->effective_indent));
return INDENT_WEIGHT * cmp_indents + (s1->penalty - s2->penalty);
}
/*
* Represent a group of changed lines in an xdfile_t (i.e., a contiguous group
* of lines that was inserted or deleted from the corresponding version of the
* file). We consider there to be such a group at the beginning of the file, at
* the end of the file, and between any two unchanged lines, though most such
* groups will usually be empty.
*
* If the first line in a group is equal to the line following the group, then
* the group can be slid down. Similarly, if the last line in a group is equal
* to the line preceding the group, then the group can be slid up. See
* group_slide_down() and group_slide_up().
*
* Note that loops that are testing for changed lines in xdf->rchg do not need
* index bounding since the array is prepared with a zero at position -1 and N.
*/
struct xdlgroup {
/*
* The index of the first changed line in the group, or the index of
* the unchanged line above which the (empty) group is located.
*/
long start;
/*
* The index of the first unchanged line after the group. For an empty
* group, end is equal to start.
*/
long end;
};
/*
* Initialize g to point at the first group in xdf.
*/
static void group_init(xdfile_t *xdf, struct xdlgroup *g)
{
g->start = g->end = 0;
while (xdf->rchg[g->end])
g->end++;
}
/*
* Move g to describe the next (possibly empty) group in xdf and return 0. If g
* is already at the end of the file, do nothing and return -1.
*/
static inline int group_next(xdfile_t *xdf, struct xdlgroup *g)
{
if (g->end == xdf->nrec)
return -1;
g->start = g->end + 1;
for (g->end = g->start; xdf->rchg[g->end]; g->end++)
;
return 0;
}
/*
* Move g to describe the previous (possibly empty) group in xdf and return 0.
* If g is already at the beginning of the file, do nothing and return -1.
*/
static inline int group_previous(xdfile_t *xdf, struct xdlgroup *g)
{
if (g->start == 0)
return -1;
g->end = g->start - 1;
for (g->start = g->end; xdf->rchg[g->start - 1]; g->start--)
;
return 0;
}
/*
* If g can be slid toward the end of the file, do so, and if it bumps into a
* following group, expand this group to include it. Return 0 on success or -1
* if g cannot be slid down.
*/
static int group_slide_down(xdfile_t *xdf, struct xdlgroup *g)
{
if (g->end < xdf->nrec &&
recs_match(xdf->recs[g->start], xdf->recs[g->end])) {
xdf->rchg[g->start++] = 0;
xdf->rchg[g->end++] = 1;
while (xdf->rchg[g->end])
g->end++;
return 0;
} else {
return -1;
}
}
/*
* If g can be slid toward the beginning of the file, do so, and if it bumps
* into a previous group, expand this group to include it. Return 0 on success
* or -1 if g cannot be slid up.
*/
static int group_slide_up(xdfile_t *xdf, struct xdlgroup *g)
{
if (g->start > 0 &&
recs_match(xdf->recs[g->start - 1], xdf->recs[g->end - 1])) {
xdf->rchg[--g->start] = 1;
xdf->rchg[--g->end] = 0;
while (xdf->rchg[g->start - 1])
g->start--;
return 0;
} else {
return -1;
}
}
/*
* Move back and forward change groups for a consistent and pretty diff output.
* This also helps in finding joinable change groups and reducing the diff
* size.
*/
int xdl_change_compact(xdfile_t *xdf, xdfile_t *xdfo, long flags) {
struct xdlgroup g, go;
long earliest_end, end_matching_other;
long groupsize;
group_init(xdf, &g);
group_init(xdfo, &go);
while (1) {
/*
* If the group is empty in the to-be-compacted file, skip it:
*/
if (g.end == g.start)
goto next;
/*
* Now shift the change up and then down as far as possible in
* each direction. If it bumps into any other changes, merge
* them.
*/
do {
groupsize = g.end - g.start;
/*
* Keep track of the last "end" index that causes this
* group to align with a group of changed lines in the
* other file. -1 indicates that we haven't found such
* a match yet:
*/
end_matching_other = -1;
/* Shift the group backward as much as possible: */
while (!group_slide_up(xdf, &g))
if (group_previous(xdfo, &go))
BUG("group sync broken sliding up");
/*
* This is this highest that this group can be shifted.
* Record its end index:
*/
earliest_end = g.end;
if (go.end > go.start)
end_matching_other = g.end;
/* Now shift the group forward as far as possible: */
while (1) {
if (group_slide_down(xdf, &g))
break;
if (group_next(xdfo, &go))
BUG("group sync broken sliding down");
if (go.end > go.start)
end_matching_other = g.end;
}
} while (groupsize != g.end - g.start);
/*
* If the group can be shifted, then we can possibly use this
* freedom to produce a more intuitive diff.
*
* The group is currently shifted as far down as possible, so
* the heuristics below only have to handle upwards shifts.
*/
if (g.end == earliest_end) {
/* no shifting was possible */
} else if (end_matching_other != -1) {
/*
* Move the possibly merged group of changes back to
* line up with the last group of changes from the
* other file that it can align with.
*/
while (go.end == go.start) {
if (group_slide_up(xdf, &g))
BUG("match disappeared");
if (group_previous(xdfo, &go))
BUG("group sync broken sliding to match");
}
} else if (flags & XDF_INDENT_HEURISTIC) {
/*
* Indent heuristic: a group of pure add/delete lines
* implies two splits, one between the end of the
* "before" context and the start of the group, and
* another between the end of the group and the
* beginning of the "after" context. Some splits are
* aesthetically better and some are worse. We compute
* a badness "score" for each split, and add the scores
* for the two splits to define a "score" for each
* position that the group can be shifted to. Then we
* pick the shift with the lowest score.
*/
long shift, best_shift = -1;
struct split_score best_score;
shift = earliest_end;
if (g.end - groupsize - 1 > shift)
shift = g.end - groupsize - 1;
if (g.end - INDENT_HEURISTIC_MAX_SLIDING > shift)
shift = g.end - INDENT_HEURISTIC_MAX_SLIDING;
for (; shift <= g.end; shift++) {
struct split_measurement m;
struct split_score score = {0, 0};
measure_split(xdf, shift, &m);
score_add_split(&m, &score);
measure_split(xdf, shift - groupsize, &m);
score_add_split(&m, &score);
if (best_shift == -1 ||
score_cmp(&score, &best_score) <= 0) {
best_score.effective_indent = score.effective_indent;
best_score.penalty = score.penalty;
best_shift = shift;
}
}
while (g.end > best_shift) {
if (group_slide_up(xdf, &g))
BUG("best shift unreached");
if (group_previous(xdfo, &go))
BUG("group sync broken sliding to blank line");
}
}
next:
/* Move past the just-processed group: */
if (group_next(xdf, &g))
break;
if (group_next(xdfo, &go))
BUG("group sync broken moving to next group");
}
if (!group_next(xdfo, &go))
BUG("group sync broken at end of file");
return 0;
}
int xdl_build_script(xdfenv_t *xe, xdchange_t **xscr) {
xdchange_t *cscr = NULL, *xch;
char *rchg1 = xe->xdf1.rchg, *rchg2 = xe->xdf2.rchg;
long i1, i2, l1, l2;
/*
* Trivial. Collects "groups" of changes and creates an edit script.
*/
for (i1 = xe->xdf1.nrec, i2 = xe->xdf2.nrec; i1 >= 0 || i2 >= 0; i1--, i2--)
if (rchg1[i1 - 1] || rchg2[i2 - 1]) {
for (l1 = i1; rchg1[i1 - 1]; i1--);
for (l2 = i2; rchg2[i2 - 1]; i2--);
if (!(xch = xdl_add_change(cscr, i1, i2, l1 - i1, l2 - i2))) {
xdl_free_script(cscr);
return -1;
}
cscr = xch;
}
*xscr = cscr;
return 0;
}
void xdl_free_script(xdchange_t *xscr) {
xdchange_t *xch;
while ((xch = xscr) != NULL) {
xscr = xscr->next;
xdl_free(xch);
}
}
static int xdl_call_hunk_func(xdfenv_t *xe UNUSED, xdchange_t *xscr, xdemitcb_t *ecb,
xdemitconf_t const *xecfg)
{
xdchange_t *xch, *xche;
for (xch = xscr; xch; xch = xche->next) {
xche = xdl_get_hunk(&xch, xecfg);
if (!xch)
break;
if (xecfg->hunk_func(xch->i1, xche->i1 + xche->chg1 - xch->i1,
xch->i2, xche->i2 + xche->chg2 - xch->i2,
ecb->priv) < 0)
return -1;
}
return 0;
}
static void xdl_mark_ignorable_lines(xdchange_t *xscr, xdfenv_t *xe, long flags)
{
xdchange_t *xch;
for (xch = xscr; xch; xch = xch->next) {
int ignore = 1;
xrecord_t **rec;
long i;
rec = &xe->xdf1.recs[xch->i1];
for (i = 0; i < xch->chg1 && ignore; i++)
ignore = xdl_blankline(rec[i]->ptr, rec[i]->size, flags);
rec = &xe->xdf2.recs[xch->i2];
for (i = 0; i < xch->chg2 && ignore; i++)
ignore = xdl_blankline(rec[i]->ptr, rec[i]->size, flags);
xch->ignore = ignore;
}
}
static int record_matches_regex(xrecord_t *rec, xpparam_t const *xpp) {
regmatch_t regmatch;
int i;
for (i = 0; i < xpp->ignore_regex_nr; i++)
if (!regexec_buf(xpp->ignore_regex[i], rec->ptr, rec->size, 1,
&regmatch, 0))
return 1;
return 0;
}
static void xdl_mark_ignorable_regex(xdchange_t *xscr, const xdfenv_t *xe,
xpparam_t const *xpp)
{
xdchange_t *xch;
for (xch = xscr; xch; xch = xch->next) {
xrecord_t **rec;
int ignore = 1;
long i;
/*
* Do not override --ignore-blank-lines.
*/
if (xch->ignore)
continue;
rec = &xe->xdf1.recs[xch->i1];
for (i = 0; i < xch->chg1 && ignore; i++)
ignore = record_matches_regex(rec[i], xpp);
rec = &xe->xdf2.recs[xch->i2];
for (i = 0; i < xch->chg2 && ignore; i++)
ignore = record_matches_regex(rec[i], xpp);
xch->ignore = ignore;
}
}
int xdl_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
xdemitconf_t const *xecfg, xdemitcb_t *ecb) {
xdchange_t *xscr;
xdfenv_t xe;
emit_func_t ef = xecfg->hunk_func ? xdl_call_hunk_func : xdl_emit_diff;
if (xdl_do_diff(mf1, mf2, xpp, &xe) < 0) {
return -1;
}
if (xdl_change_compact(&xe.xdf1, &xe.xdf2, xpp->flags) < 0 ||
xdl_change_compact(&xe.xdf2, &xe.xdf1, xpp->flags) < 0 ||
xdl_build_script(&xe, &xscr) < 0) {
xdl_free_env(&xe);
return -1;
}
if (xscr) {
if (xpp->flags & XDF_IGNORE_BLANK_LINES)
xdl_mark_ignorable_lines(xscr, &xe, xpp->flags);
if (xpp->ignore_regex)
xdl_mark_ignorable_regex(xscr, &xe, xpp);
if (ef(&xe, xscr, ecb, xecfg) < 0) {
xdl_free_script(xscr);
xdl_free_env(&xe);
return -1;
}
xdl_free_script(xscr);
}
xdl_free_env(&xe);
return 0;
}