465 lines
11 KiB
C
465 lines
11 KiB
C
/*
|
|
* LibXDiff by Davide Libenzi ( File Differential Library )
|
|
* Copyright (C) 2003 Davide Libenzi
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Davide Libenzi <davidel@xmailserver.org>
|
|
*
|
|
*/
|
|
|
|
#include "xinclude.h"
|
|
|
|
|
|
|
|
#define XDL_MAX_COST_MIN 256
|
|
#define XDL_HEUR_MIN_COST 256
|
|
#define XDL_LINE_MAX (long)((1UL << (8 * sizeof(long) - 1)) - 1)
|
|
#define XDL_SNAKE_CNT 20
|
|
#define XDL_K_HEUR 4
|
|
|
|
|
|
|
|
typedef struct s_xdpsplit {
|
|
long i1, i2;
|
|
int min_lo, min_hi;
|
|
} xdpsplit_t;
|
|
|
|
|
|
|
|
|
|
static long xdl_split(unsigned long const *ha1, long off1, long lim1,
|
|
unsigned long const *ha2, long off2, long lim2,
|
|
long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl,
|
|
xdalgoenv_t *xenv);
|
|
static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2);
|
|
|
|
|
|
|
|
|
|
/*
|
|
* See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers.
|
|
* Basically considers a "box" (off1, off2, lim1, lim2) and scan from both
|
|
* the forward diagonal starting from (off1, off2) and the backward diagonal
|
|
* starting from (lim1, lim2). If the K values on the same diagonal crosses
|
|
* returns the furthest point of reach. We might end up having to expensive
|
|
* cases using this algorithm is full, so a little bit of heuristic is needed
|
|
* to cut the search and to return a suboptimal point.
|
|
*/
|
|
static long xdl_split(unsigned long const *ha1, long off1, long lim1,
|
|
unsigned long const *ha2, long off2, long lim2,
|
|
long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl,
|
|
xdalgoenv_t *xenv) {
|
|
long dmin = off1 - lim2, dmax = lim1 - off2;
|
|
long fmid = off1 - off2, bmid = lim1 - lim2;
|
|
long odd = (fmid - bmid) & 1;
|
|
long fmin = fmid, fmax = fmid;
|
|
long bmin = bmid, bmax = bmid;
|
|
long ec, d, i1, i2, prev1, best, dd, v, k;
|
|
|
|
/*
|
|
* Set initial diagonal values for both forward and backward path.
|
|
*/
|
|
kvdf[fmid] = off1;
|
|
kvdb[bmid] = lim1;
|
|
|
|
for (ec = 1;; ec++) {
|
|
int got_snake = 0;
|
|
|
|
/*
|
|
* We need to extent the diagonal "domain" by one. If the next
|
|
* values exits the box boundaries we need to change it in the
|
|
* opposite direction because (max - min) must be a power of two.
|
|
* Also we initialize the extenal K value to -1 so that we can
|
|
* avoid extra conditions check inside the core loop.
|
|
*/
|
|
if (fmin > dmin)
|
|
kvdf[--fmin - 1] = -1;
|
|
else
|
|
++fmin;
|
|
if (fmax < dmax)
|
|
kvdf[++fmax + 1] = -1;
|
|
else
|
|
--fmax;
|
|
|
|
for (d = fmax; d >= fmin; d -= 2) {
|
|
if (kvdf[d - 1] >= kvdf[d + 1])
|
|
i1 = kvdf[d - 1] + 1;
|
|
else
|
|
i1 = kvdf[d + 1];
|
|
prev1 = i1;
|
|
i2 = i1 - d;
|
|
for (; i1 < lim1 && i2 < lim2 && ha1[i1] == ha2[i2]; i1++, i2++);
|
|
if (i1 - prev1 > xenv->snake_cnt)
|
|
got_snake = 1;
|
|
kvdf[d] = i1;
|
|
if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1) {
|
|
spl->i1 = i1;
|
|
spl->i2 = i2;
|
|
spl->min_lo = spl->min_hi = 1;
|
|
return ec;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We need to extent the diagonal "domain" by one. If the next
|
|
* values exits the box boundaries we need to change it in the
|
|
* opposite direction because (max - min) must be a power of two.
|
|
* Also we initialize the extenal K value to -1 so that we can
|
|
* avoid extra conditions check inside the core loop.
|
|
*/
|
|
if (bmin > dmin)
|
|
kvdb[--bmin - 1] = XDL_LINE_MAX;
|
|
else
|
|
++bmin;
|
|
if (bmax < dmax)
|
|
kvdb[++bmax + 1] = XDL_LINE_MAX;
|
|
else
|
|
--bmax;
|
|
|
|
for (d = bmax; d >= bmin; d -= 2) {
|
|
if (kvdb[d - 1] < kvdb[d + 1])
|
|
i1 = kvdb[d - 1];
|
|
else
|
|
i1 = kvdb[d + 1] - 1;
|
|
prev1 = i1;
|
|
i2 = i1 - d;
|
|
for (; i1 > off1 && i2 > off2 && ha1[i1 - 1] == ha2[i2 - 1]; i1--, i2--);
|
|
if (prev1 - i1 > xenv->snake_cnt)
|
|
got_snake = 1;
|
|
kvdb[d] = i1;
|
|
if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) {
|
|
spl->i1 = i1;
|
|
spl->i2 = i2;
|
|
spl->min_lo = spl->min_hi = 1;
|
|
return ec;
|
|
}
|
|
}
|
|
|
|
if (need_min)
|
|
continue;
|
|
|
|
/*
|
|
* If the edit cost is above the heuristic trigger and if
|
|
* we got a good snake, we sample current diagonals to see
|
|
* if some of the, have reached an "interesting" path. Our
|
|
* measure is a function of the distance from the diagonal
|
|
* corner (i1 + i2) penalized with the distance from the
|
|
* mid diagonal itself. If this value is above the current
|
|
* edit cost times a magic factor (XDL_K_HEUR) we consider
|
|
* it interesting.
|
|
*/
|
|
if (got_snake && ec > xenv->heur_min) {
|
|
for (best = 0, d = fmax; d >= fmin; d -= 2) {
|
|
dd = d > fmid ? d - fmid: fmid - d;
|
|
i1 = kvdf[d];
|
|
i2 = i1 - d;
|
|
v = (i1 - off1) + (i2 - off2) - dd;
|
|
|
|
if (v > XDL_K_HEUR * ec && v > best &&
|
|
off1 + xenv->snake_cnt <= i1 && i1 < lim1 &&
|
|
off2 + xenv->snake_cnt <= i2 && i2 < lim2) {
|
|
for (k = 1; ha1[i1 - k] == ha2[i2 - k]; k++)
|
|
if (k == xenv->snake_cnt) {
|
|
best = v;
|
|
spl->i1 = i1;
|
|
spl->i2 = i2;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (best > 0) {
|
|
spl->min_lo = 1;
|
|
spl->min_hi = 0;
|
|
return ec;
|
|
}
|
|
|
|
for (best = 0, d = bmax; d >= bmin; d -= 2) {
|
|
dd = d > bmid ? d - bmid: bmid - d;
|
|
i1 = kvdb[d];
|
|
i2 = i1 - d;
|
|
v = (lim1 - i1) + (lim2 - i2) - dd;
|
|
|
|
if (v > XDL_K_HEUR * ec && v > best &&
|
|
off1 < i1 && i1 <= lim1 - xenv->snake_cnt &&
|
|
off2 < i2 && i2 <= lim2 - xenv->snake_cnt) {
|
|
for (k = 0; ha1[i1 + k] == ha2[i2 + k]; k++)
|
|
if (k == xenv->snake_cnt - 1) {
|
|
best = v;
|
|
spl->i1 = i1;
|
|
spl->i2 = i2;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (best > 0) {
|
|
spl->min_lo = 0;
|
|
spl->min_hi = 1;
|
|
return ec;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Enough is enough. We spent too much time here and now we collect
|
|
* the furthest reaching path using the (i1 + i2) measure.
|
|
*/
|
|
if (ec >= xenv->mxcost) {
|
|
long fbest, fbest1, bbest, bbest1;
|
|
|
|
fbest = -1;
|
|
for (d = fmax; d >= fmin; d -= 2) {
|
|
i1 = XDL_MIN(kvdf[d], lim1);
|
|
i2 = i1 - d;
|
|
if (lim2 < i2)
|
|
i1 = lim2 + d, i2 = lim2;
|
|
if (fbest < i1 + i2) {
|
|
fbest = i1 + i2;
|
|
fbest1 = i1;
|
|
}
|
|
}
|
|
|
|
bbest = XDL_LINE_MAX;
|
|
for (d = bmax; d >= bmin; d -= 2) {
|
|
i1 = XDL_MAX(off1, kvdb[d]);
|
|
i2 = i1 - d;
|
|
if (i2 < off2)
|
|
i1 = off2 + d, i2 = off2;
|
|
if (i1 + i2 < bbest) {
|
|
bbest = i1 + i2;
|
|
bbest1 = i1;
|
|
}
|
|
}
|
|
|
|
if ((lim1 + lim2) - bbest < fbest - (off1 + off2)) {
|
|
spl->i1 = fbest1;
|
|
spl->i2 = fbest - fbest1;
|
|
spl->min_lo = 1;
|
|
spl->min_hi = 0;
|
|
} else {
|
|
spl->i1 = bbest1;
|
|
spl->i2 = bbest - bbest1;
|
|
spl->min_lo = 0;
|
|
spl->min_hi = 1;
|
|
}
|
|
return ec;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
|
|
/*
|
|
* Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling
|
|
* the box splitting function. Note that the real job (marking changed lines)
|
|
* is done in the two boundary reaching checks.
|
|
*/
|
|
int xdl_recs_cmp(diffdata_t *dd1, long off1, long lim1,
|
|
diffdata_t *dd2, long off2, long lim2,
|
|
long *kvdf, long *kvdb, int need_min, xdalgoenv_t *xenv) {
|
|
unsigned long const *ha1 = dd1->ha, *ha2 = dd2->ha;
|
|
|
|
/*
|
|
* Shrink the box by walking through each diagonal snake (SW and NE).
|
|
*/
|
|
for (; off1 < lim1 && off2 < lim2 && ha1[off1] == ha2[off2]; off1++, off2++);
|
|
for (; off1 < lim1 && off2 < lim2 && ha1[lim1 - 1] == ha2[lim2 - 1]; lim1--, lim2--);
|
|
|
|
/*
|
|
* If one dimension is empty, then all records on the other one must
|
|
* be obviously changed.
|
|
*/
|
|
if (off1 == lim1) {
|
|
char *rchg2 = dd2->rchg;
|
|
long *rindex2 = dd2->rindex;
|
|
|
|
for (; off2 < lim2; off2++)
|
|
rchg2[rindex2[off2]] = 1;
|
|
} else if (off2 == lim2) {
|
|
char *rchg1 = dd1->rchg;
|
|
long *rindex1 = dd1->rindex;
|
|
|
|
for (; off1 < lim1; off1++)
|
|
rchg1[rindex1[off1]] = 1;
|
|
} else {
|
|
long ec;
|
|
xdpsplit_t spl;
|
|
|
|
/*
|
|
* Divide ...
|
|
*/
|
|
if ((ec = xdl_split(ha1, off1, lim1, ha2, off2, lim2, kvdf, kvdb,
|
|
need_min, &spl, xenv)) < 0) {
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* ... et Impera.
|
|
*/
|
|
if (xdl_recs_cmp(dd1, off1, spl.i1, dd2, off2, spl.i2,
|
|
kvdf, kvdb, spl.min_lo, xenv) < 0 ||
|
|
xdl_recs_cmp(dd1, spl.i1, lim1, dd2, spl.i2, lim2,
|
|
kvdf, kvdb, spl.min_hi, xenv) < 0) {
|
|
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int xdl_do_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
|
|
xdfenv_t *xe) {
|
|
long ndiags;
|
|
long *kvd, *kvdf, *kvdb;
|
|
xdalgoenv_t xenv;
|
|
diffdata_t dd1, dd2;
|
|
|
|
if (xdl_prepare_env(mf1, mf2, xpp, xe) < 0) {
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Allocate and setup K vectors to be used by the differential algorithm.
|
|
* One is to store the forward path and one to store the backward path.
|
|
*/
|
|
ndiags = xe->xdf1.nreff + xe->xdf2.nreff + 3;
|
|
if (!(kvd = (long *) xdl_malloc((2 * ndiags + 2) * sizeof(long)))) {
|
|
|
|
xdl_free_env(xe);
|
|
return -1;
|
|
}
|
|
kvdf = kvd;
|
|
kvdb = kvdf + ndiags;
|
|
kvdf += xe->xdf2.nreff + 1;
|
|
kvdb += xe->xdf2.nreff + 1;
|
|
|
|
xenv.mxcost = xdl_bogosqrt(ndiags);
|
|
if (xenv.mxcost < XDL_MAX_COST_MIN)
|
|
xenv.mxcost = XDL_MAX_COST_MIN;
|
|
xenv.snake_cnt = XDL_SNAKE_CNT;
|
|
xenv.heur_min = XDL_HEUR_MIN_COST;
|
|
|
|
dd1.nrec = xe->xdf1.nreff;
|
|
dd1.ha = xe->xdf1.ha;
|
|
dd1.rchg = xe->xdf1.rchg;
|
|
dd1.rindex = xe->xdf1.rindex;
|
|
dd2.nrec = xe->xdf2.nreff;
|
|
dd2.ha = xe->xdf2.ha;
|
|
dd2.rchg = xe->xdf2.rchg;
|
|
dd2.rindex = xe->xdf2.rindex;
|
|
|
|
if (xdl_recs_cmp(&dd1, 0, dd1.nrec, &dd2, 0, dd2.nrec,
|
|
kvdf, kvdb, (xpp->flags & XDF_NEED_MINIMAL) != 0, &xenv) < 0) {
|
|
|
|
xdl_free(kvd);
|
|
xdl_free_env(xe);
|
|
return -1;
|
|
}
|
|
|
|
xdl_free(kvd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2) {
|
|
xdchange_t *xch;
|
|
|
|
if (!(xch = (xdchange_t *) xdl_malloc(sizeof(xdchange_t))))
|
|
return NULL;
|
|
|
|
xch->next = xscr;
|
|
xch->i1 = i1;
|
|
xch->i2 = i2;
|
|
xch->chg1 = chg1;
|
|
xch->chg2 = chg2;
|
|
|
|
return xch;
|
|
}
|
|
|
|
|
|
int xdl_build_script(xdfenv_t *xe, xdchange_t **xscr) {
|
|
xdchange_t *cscr = NULL, *xch;
|
|
char *rchg1 = xe->xdf1.rchg, *rchg2 = xe->xdf2.rchg;
|
|
long i1, i2, l1, l2;
|
|
|
|
/*
|
|
* Trivial. Collects "groups" of changes and creates an edit script.
|
|
*/
|
|
for (i1 = xe->xdf1.nrec, i2 = xe->xdf2.nrec; i1 >= 0 || i2 >= 0; i1--, i2--)
|
|
if (rchg1[i1 - 1] || rchg2[i2 - 1]) {
|
|
for (l1 = i1; rchg1[i1 - 1]; i1--);
|
|
for (l2 = i2; rchg2[i2 - 1]; i2--);
|
|
|
|
if (!(xch = xdl_add_change(cscr, i1, i2, l1 - i1, l2 - i2))) {
|
|
xdl_free_script(cscr);
|
|
return -1;
|
|
}
|
|
cscr = xch;
|
|
}
|
|
|
|
*xscr = cscr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void xdl_free_script(xdchange_t *xscr) {
|
|
xdchange_t *xch;
|
|
|
|
while ((xch = xscr) != NULL) {
|
|
xscr = xscr->next;
|
|
xdl_free(xch);
|
|
}
|
|
}
|
|
|
|
|
|
int xdl_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
|
|
xdemitconf_t const *xecfg, xdemitcb_t *ecb) {
|
|
xdchange_t *xscr;
|
|
xdfenv_t xe;
|
|
|
|
if (xdl_do_diff(mf1, mf2, xpp, &xe) < 0) {
|
|
|
|
return -1;
|
|
}
|
|
|
|
if (xdl_build_script(&xe, &xscr) < 0) {
|
|
|
|
xdl_free_env(&xe);
|
|
return -1;
|
|
}
|
|
|
|
if (xscr) {
|
|
if (xdl_emit_diff(&xe, xscr, ecb, xecfg) < 0) {
|
|
|
|
xdl_free_script(xscr);
|
|
xdl_free_env(&xe);
|
|
return -1;
|
|
}
|
|
|
|
xdl_free_script(xscr);
|
|
}
|
|
|
|
xdl_free_env(&xe);
|
|
|
|
return 0;
|
|
}
|
|
|