golang/src/crypto/tls/key_agreement.go

367 lines
12 KiB
Go
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
import (
"crypto"
"crypto/ecdh"
"crypto/md5"
"crypto/rsa"
"crypto/sha1"
"crypto/x509"
"errors"
"fmt"
"io"
)
// A keyAgreement implements the client and server side of a TLS 1.01.2 key
// agreement protocol by generating and processing key exchange messages.
type keyAgreement interface {
// On the server side, the first two methods are called in order.
// In the case that the key agreement protocol doesn't use a
// ServerKeyExchange message, generateServerKeyExchange can return nil,
// nil.
generateServerKeyExchange(*Config, *Certificate, *clientHelloMsg, *serverHelloMsg) (*serverKeyExchangeMsg, error)
processClientKeyExchange(*Config, *Certificate, *clientKeyExchangeMsg, uint16) ([]byte, error)
// On the client side, the next two methods are called in order.
// This method may not be called if the server doesn't send a
// ServerKeyExchange message.
processServerKeyExchange(*Config, *clientHelloMsg, *serverHelloMsg, *x509.Certificate, *serverKeyExchangeMsg) error
generateClientKeyExchange(*Config, *clientHelloMsg, *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error)
}
var errClientKeyExchange = errors.New("tls: invalid ClientKeyExchange message")
var errServerKeyExchange = errors.New("tls: invalid ServerKeyExchange message")
// rsaKeyAgreement implements the standard TLS key agreement where the client
// encrypts the pre-master secret to the server's public key.
type rsaKeyAgreement struct{}
func (ka rsaKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
return nil, nil
}
func (ka rsaKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
if len(ckx.ciphertext) < 2 {
return nil, errClientKeyExchange
}
ciphertextLen := int(ckx.ciphertext[0])<<8 | int(ckx.ciphertext[1])
if ciphertextLen != len(ckx.ciphertext)-2 {
return nil, errClientKeyExchange
}
ciphertext := ckx.ciphertext[2:]
priv, ok := cert.PrivateKey.(crypto.Decrypter)
if !ok {
return nil, errors.New("tls: certificate private key does not implement crypto.Decrypter")
}
// Perform constant time RSA PKCS #1 v1.5 decryption
preMasterSecret, err := priv.Decrypt(config.rand(), ciphertext, &rsa.PKCS1v15DecryptOptions{SessionKeyLen: 48})
if err != nil {
return nil, err
}
// We don't check the version number in the premaster secret. For one,
// by checking it, we would leak information about the validity of the
// encrypted pre-master secret. Secondly, it provides only a small
// benefit against a downgrade attack and some implementations send the
// wrong version anyway. See the discussion at the end of section
// 7.4.7.1 of RFC 4346.
return preMasterSecret, nil
}
func (ka rsaKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
return errors.New("tls: unexpected ServerKeyExchange")
}
func (ka rsaKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
preMasterSecret := make([]byte, 48)
preMasterSecret[0] = byte(clientHello.vers >> 8)
preMasterSecret[1] = byte(clientHello.vers)
_, err := io.ReadFull(config.rand(), preMasterSecret[2:])
if err != nil {
return nil, nil, err
}
rsaKey, ok := cert.PublicKey.(*rsa.PublicKey)
if !ok {
return nil, nil, errors.New("tls: server certificate contains incorrect key type for selected ciphersuite")
}
encrypted, err := rsa.EncryptPKCS1v15(config.rand(), rsaKey, preMasterSecret)
if err != nil {
return nil, nil, err
}
ckx := new(clientKeyExchangeMsg)
ckx.ciphertext = make([]byte, len(encrypted)+2)
ckx.ciphertext[0] = byte(len(encrypted) >> 8)
ckx.ciphertext[1] = byte(len(encrypted))
copy(ckx.ciphertext[2:], encrypted)
return preMasterSecret, ckx, nil
}
// sha1Hash calculates a SHA1 hash over the given byte slices.
func sha1Hash(slices [][]byte) []byte {
hsha1 := sha1.New()
for _, slice := range slices {
hsha1.Write(slice)
}
return hsha1.Sum(nil)
}
// md5SHA1Hash implements TLS 1.0's hybrid hash function which consists of the
// concatenation of an MD5 and SHA1 hash.
func md5SHA1Hash(slices [][]byte) []byte {
md5sha1 := make([]byte, md5.Size+sha1.Size)
hmd5 := md5.New()
for _, slice := range slices {
hmd5.Write(slice)
}
copy(md5sha1, hmd5.Sum(nil))
copy(md5sha1[md5.Size:], sha1Hash(slices))
return md5sha1
}
// hashForServerKeyExchange hashes the given slices and returns their digest
// using the given hash function (for TLS 1.2) or using a default based on
// the sigType (for earlier TLS versions). For Ed25519 signatures, which don't
// do pre-hashing, it returns the concatenation of the slices.
func hashForServerKeyExchange(sigType uint8, hashFunc crypto.Hash, version uint16, slices ...[]byte) []byte {
if sigType == signatureEd25519 {
var signed []byte
for _, slice := range slices {
signed = append(signed, slice...)
}
return signed
}
if version >= VersionTLS12 {
h := hashFunc.New()
for _, slice := range slices {
h.Write(slice)
}
digest := h.Sum(nil)
return digest
}
if sigType == signatureECDSA {
return sha1Hash(slices)
}
return md5SHA1Hash(slices)
}
// ecdheKeyAgreement implements a TLS key agreement where the server
// generates an ephemeral EC public/private key pair and signs it. The
// pre-master secret is then calculated using ECDH. The signature may
// be ECDSA, Ed25519 or RSA.
type ecdheKeyAgreement struct {
version uint16
isRSA bool
key *ecdh.PrivateKey
// ckx and preMasterSecret are generated in processServerKeyExchange
// and returned in generateClientKeyExchange.
ckx *clientKeyExchangeMsg
preMasterSecret []byte
}
func (ka *ecdheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
var curveID CurveID
for _, c := range clientHello.supportedCurves {
if config.supportsCurve(ka.version, c) {
curveID = c
break
}
}
if curveID == 0 {
return nil, errors.New("tls: no supported elliptic curves offered")
}
if _, ok := curveForCurveID(curveID); !ok {
return nil, errors.New("tls: CurvePreferences includes unsupported curve")
}
key, err := generateECDHEKey(config.rand(), curveID)
if err != nil {
return nil, err
}
ka.key = key
// See RFC 4492, Section 5.4.
ecdhePublic := key.PublicKey().Bytes()
serverECDHEParams := make([]byte, 1+2+1+len(ecdhePublic))
serverECDHEParams[0] = 3 // named curve
serverECDHEParams[1] = byte(curveID >> 8)
serverECDHEParams[2] = byte(curveID)
serverECDHEParams[3] = byte(len(ecdhePublic))
copy(serverECDHEParams[4:], ecdhePublic)
priv, ok := cert.PrivateKey.(crypto.Signer)
if !ok {
return nil, fmt.Errorf("tls: certificate private key of type %T does not implement crypto.Signer", cert.PrivateKey)
}
var signatureAlgorithm SignatureScheme
var sigType uint8
var sigHash crypto.Hash
if ka.version >= VersionTLS12 {
signatureAlgorithm, err = selectSignatureScheme(ka.version, cert, clientHello.supportedSignatureAlgorithms)
if err != nil {
return nil, err
}
sigType, sigHash, err = typeAndHashFromSignatureScheme(signatureAlgorithm)
if err != nil {
return nil, err
}
} else {
sigType, sigHash, err = legacyTypeAndHashFromPublicKey(priv.Public())
if err != nil {
return nil, err
}
}
if (sigType == signaturePKCS1v15 || sigType == signatureRSAPSS) != ka.isRSA {
return nil, errors.New("tls: certificate cannot be used with the selected cipher suite")
}
signed := hashForServerKeyExchange(sigType, sigHash, ka.version, clientHello.random, hello.random, serverECDHEParams)
signOpts := crypto.SignerOpts(sigHash)
if sigType == signatureRSAPSS {
signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: sigHash}
}
sig, err := priv.Sign(config.rand(), signed, signOpts)
if err != nil {
return nil, errors.New("tls: failed to sign ECDHE parameters: " + err.Error())
}
skx := new(serverKeyExchangeMsg)
sigAndHashLen := 0
if ka.version >= VersionTLS12 {
sigAndHashLen = 2
}
skx.key = make([]byte, len(serverECDHEParams)+sigAndHashLen+2+len(sig))
copy(skx.key, serverECDHEParams)
k := skx.key[len(serverECDHEParams):]
if ka.version >= VersionTLS12 {
k[0] = byte(signatureAlgorithm >> 8)
k[1] = byte(signatureAlgorithm)
k = k[2:]
}
k[0] = byte(len(sig) >> 8)
k[1] = byte(len(sig))
copy(k[2:], sig)
return skx, nil
}
func (ka *ecdheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
if len(ckx.ciphertext) == 0 || int(ckx.ciphertext[0]) != len(ckx.ciphertext)-1 {
return nil, errClientKeyExchange
}
peerKey, err := ka.key.Curve().NewPublicKey(ckx.ciphertext[1:])
if err != nil {
return nil, errClientKeyExchange
}
preMasterSecret, err := ka.key.ECDH(peerKey)
if err != nil {
return nil, errClientKeyExchange
}
return preMasterSecret, nil
}
func (ka *ecdheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
if len(skx.key) < 4 {
return errServerKeyExchange
}
if skx.key[0] != 3 { // named curve
return errors.New("tls: server selected unsupported curve")
}
curveID := CurveID(skx.key[1])<<8 | CurveID(skx.key[2])
publicLen := int(skx.key[3])
if publicLen+4 > len(skx.key) {
return errServerKeyExchange
}
serverECDHEParams := skx.key[:4+publicLen]
publicKey := serverECDHEParams[4:]
sig := skx.key[4+publicLen:]
if len(sig) < 2 {
return errServerKeyExchange
}
if _, ok := curveForCurveID(curveID); !ok {
return errors.New("tls: server selected unsupported curve")
}
key, err := generateECDHEKey(config.rand(), curveID)
if err != nil {
return err
}
ka.key = key
peerKey, err := key.Curve().NewPublicKey(publicKey)
if err != nil {
return errServerKeyExchange
}
ka.preMasterSecret, err = key.ECDH(peerKey)
if err != nil {
return errServerKeyExchange
}
ourPublicKey := key.PublicKey().Bytes()
ka.ckx = new(clientKeyExchangeMsg)
ka.ckx.ciphertext = make([]byte, 1+len(ourPublicKey))
ka.ckx.ciphertext[0] = byte(len(ourPublicKey))
copy(ka.ckx.ciphertext[1:], ourPublicKey)
var sigType uint8
var sigHash crypto.Hash
if ka.version >= VersionTLS12 {
signatureAlgorithm := SignatureScheme(sig[0])<<8 | SignatureScheme(sig[1])
sig = sig[2:]
if len(sig) < 2 {
return errServerKeyExchange
}
if !isSupportedSignatureAlgorithm(signatureAlgorithm, clientHello.supportedSignatureAlgorithms) {
return errors.New("tls: certificate used with invalid signature algorithm")
}
sigType, sigHash, err = typeAndHashFromSignatureScheme(signatureAlgorithm)
if err != nil {
return err
}
} else {
sigType, sigHash, err = legacyTypeAndHashFromPublicKey(cert.PublicKey)
if err != nil {
return err
}
}
if (sigType == signaturePKCS1v15 || sigType == signatureRSAPSS) != ka.isRSA {
return errServerKeyExchange
}
sigLen := int(sig[0])<<8 | int(sig[1])
if sigLen+2 != len(sig) {
return errServerKeyExchange
}
sig = sig[2:]
signed := hashForServerKeyExchange(sigType, sigHash, ka.version, clientHello.random, serverHello.random, serverECDHEParams)
if err := verifyHandshakeSignature(sigType, cert.PublicKey, sigHash, signed, sig); err != nil {
return errors.New("tls: invalid signature by the server certificate: " + err.Error())
}
return nil
}
func (ka *ecdheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
if ka.ckx == nil {
return nil, nil, errors.New("tls: missing ServerKeyExchange message")
}
return ka.preMasterSecret, ka.ckx, nil
}