golang/src/runtime/race_s390x.s

441 lines
13 KiB
ArmAsm
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build race
#include "go_asm.h"
#include "funcdata.h"
#include "textflag.h"
// The following thunks allow calling the gcc-compiled race runtime directly
// from Go code without going all the way through cgo.
// First, it's much faster (up to 50% speedup for real Go programs).
// Second, it eliminates race-related special cases from cgocall and scheduler.
// Third, in long-term it will allow to remove cyclic runtime/race dependency on cmd/go.
// A brief recap of the s390x C calling convention.
// Arguments are passed in R2...R6, the rest is on stack.
// Callee-saved registers are: R6...R13, R15.
// Temporary registers are: R0...R5, R14.
// When calling racecalladdr, R1 is the call target address.
// The race ctx, ThreadState *thr below, is passed in R2 and loaded in racecalladdr.
// func runtime·raceread(addr uintptr)
// Called from instrumented code.
TEXT runtime·raceread(SB), NOSPLIT, $0-8
// void __tsan_read(ThreadState *thr, void *addr, void *pc);
MOVD $__tsan_read(SB), R1
MOVD addr+0(FP), R3
MOVD R14, R4
JMP racecalladdr<>(SB)
// func runtime·RaceRead(addr uintptr)
TEXT runtime·RaceRead(SB), NOSPLIT, $0-8
// This needs to be a tail call, because raceread reads caller pc.
JMP runtime·raceread(SB)
// func runtime·racereadpc(void *addr, void *callpc, void *pc)
TEXT runtime·racereadpc(SB), NOSPLIT, $0-24
// void __tsan_read_pc(ThreadState *thr, void *addr, void *callpc, void *pc);
MOVD $__tsan_read_pc(SB), R1
LMG addr+0(FP), R3, R5
JMP racecalladdr<>(SB)
// func runtime·racewrite(addr uintptr)
// Called from instrumented code.
TEXT runtime·racewrite(SB), NOSPLIT, $0-8
// void __tsan_write(ThreadState *thr, void *addr, void *pc);
MOVD $__tsan_write(SB), R1
MOVD addr+0(FP), R3
MOVD R14, R4
JMP racecalladdr<>(SB)
// func runtime·RaceWrite(addr uintptr)
TEXT runtime·RaceWrite(SB), NOSPLIT, $0-8
// This needs to be a tail call, because racewrite reads caller pc.
JMP runtime·racewrite(SB)
// func runtime·racewritepc(void *addr, void *callpc, void *pc)
TEXT runtime·racewritepc(SB), NOSPLIT, $0-24
// void __tsan_write_pc(ThreadState *thr, void *addr, void *callpc, void *pc);
MOVD $__tsan_write_pc(SB), R1
LMG addr+0(FP), R3, R5
JMP racecalladdr<>(SB)
// func runtime·racereadrange(addr, size uintptr)
// Called from instrumented code.
TEXT runtime·racereadrange(SB), NOSPLIT, $0-16
// void __tsan_read_range(ThreadState *thr, void *addr, uintptr size, void *pc);
MOVD $__tsan_read_range(SB), R1
LMG addr+0(FP), R3, R4
MOVD R14, R5
JMP racecalladdr<>(SB)
// func runtime·RaceReadRange(addr, size uintptr)
TEXT runtime·RaceReadRange(SB), NOSPLIT, $0-16
// This needs to be a tail call, because racereadrange reads caller pc.
JMP runtime·racereadrange(SB)
// func runtime·racereadrangepc1(void *addr, uintptr sz, void *pc)
TEXT runtime·racereadrangepc1(SB), NOSPLIT, $0-24
// void __tsan_read_range(ThreadState *thr, void *addr, uintptr size, void *pc);
MOVD $__tsan_read_range(SB), R1
LMG addr+0(FP), R3, R5
// pc is an interceptor address, but TSan expects it to point to the
// middle of an interceptor (see LLVM's SCOPED_INTERCEPTOR_RAW).
ADD $2, R5
JMP racecalladdr<>(SB)
// func runtime·racewriterange(addr, size uintptr)
// Called from instrumented code.
TEXT runtime·racewriterange(SB), NOSPLIT, $0-16
// void __tsan_write_range(ThreadState *thr, void *addr, uintptr size, void *pc);
MOVD $__tsan_write_range(SB), R1
LMG addr+0(FP), R3, R4
MOVD R14, R5
JMP racecalladdr<>(SB)
// func runtime·RaceWriteRange(addr, size uintptr)
TEXT runtime·RaceWriteRange(SB), NOSPLIT, $0-16
// This needs to be a tail call, because racewriterange reads caller pc.
JMP runtime·racewriterange(SB)
// func runtime·racewriterangepc1(void *addr, uintptr sz, void *pc)
TEXT runtime·racewriterangepc1(SB), NOSPLIT, $0-24
// void __tsan_write_range(ThreadState *thr, void *addr, uintptr size, void *pc);
MOVD $__tsan_write_range(SB), R1
LMG addr+0(FP), R3, R5
// pc is an interceptor address, but TSan expects it to point to the
// middle of an interceptor (see LLVM's SCOPED_INTERCEPTOR_RAW).
ADD $2, R5
JMP racecalladdr<>(SB)
// If R3 is out of range, do nothing. Otherwise, setup goroutine context and
// invoke racecall. Other arguments are already set.
TEXT racecalladdr<>(SB), NOSPLIT, $0-0
MOVD runtime·racearenastart(SB), R0
CMPUBLT R3, R0, data // Before racearena start?
MOVD runtime·racearenaend(SB), R0
CMPUBLT R3, R0, call // Before racearena end?
data:
MOVD runtime·racedatastart(SB), R0
CMPUBLT R3, R0, ret // Before racedata start?
MOVD runtime·racedataend(SB), R0
CMPUBGE R3, R0, ret // At or after racedata end?
call:
MOVD g_racectx(g), R2
JMP racecall<>(SB)
ret:
RET
// func runtime·racefuncenter(pc uintptr)
// Called from instrumented code.
TEXT runtime·racefuncenter(SB), NOSPLIT, $0-8
MOVD callpc+0(FP), R3
JMP racefuncenter<>(SB)
// Common code for racefuncenter
// R3 = caller's return address
TEXT racefuncenter<>(SB), NOSPLIT, $0-0
// void __tsan_func_enter(ThreadState *thr, void *pc);
MOVD $__tsan_func_enter(SB), R1
MOVD g_racectx(g), R2
BL racecall<>(SB)
RET
// func runtime·racefuncexit()
// Called from instrumented code.
TEXT runtime·racefuncexit(SB), NOSPLIT, $0-0
// void __tsan_func_exit(ThreadState *thr);
MOVD $__tsan_func_exit(SB), R1
MOVD g_racectx(g), R2
JMP racecall<>(SB)
// Atomic operations for sync/atomic package.
// Load
TEXT syncatomic·LoadInt32(SB), NOSPLIT, $0-12
GO_ARGS
MOVD $__tsan_go_atomic32_load(SB), R1
BL racecallatomic<>(SB)
RET
TEXT syncatomic·LoadInt64(SB), NOSPLIT, $0-16
GO_ARGS
MOVD $__tsan_go_atomic64_load(SB), R1
BL racecallatomic<>(SB)
RET
TEXT syncatomic·LoadUint32(SB), NOSPLIT, $0-12
GO_ARGS
JMP syncatomic·LoadInt32(SB)
TEXT syncatomic·LoadUint64(SB), NOSPLIT, $0-16
GO_ARGS
JMP syncatomic·LoadInt64(SB)
TEXT syncatomic·LoadUintptr(SB), NOSPLIT, $0-16
GO_ARGS
JMP syncatomic·LoadInt64(SB)
TEXT syncatomic·LoadPointer(SB), NOSPLIT, $0-16
GO_ARGS
JMP syncatomic·LoadInt64(SB)
// Store
TEXT syncatomic·StoreInt32(SB), NOSPLIT, $0-12
GO_ARGS
MOVD $__tsan_go_atomic32_store(SB), R1
BL racecallatomic<>(SB)
RET
TEXT syncatomic·StoreInt64(SB), NOSPLIT, $0-16
GO_ARGS
MOVD $__tsan_go_atomic64_store(SB), R1
BL racecallatomic<>(SB)
RET
TEXT syncatomic·StoreUint32(SB), NOSPLIT, $0-12
GO_ARGS
JMP syncatomic·StoreInt32(SB)
TEXT syncatomic·StoreUint64(SB), NOSPLIT, $0-16
GO_ARGS
JMP syncatomic·StoreInt64(SB)
TEXT syncatomic·StoreUintptr(SB), NOSPLIT, $0-16
GO_ARGS
JMP syncatomic·StoreInt64(SB)
// Swap
TEXT syncatomic·SwapInt32(SB), NOSPLIT, $0-20
GO_ARGS
MOVD $__tsan_go_atomic32_exchange(SB), R1
BL racecallatomic<>(SB)
RET
TEXT syncatomic·SwapInt64(SB), NOSPLIT, $0-24
GO_ARGS
MOVD $__tsan_go_atomic64_exchange(SB), R1
BL racecallatomic<>(SB)
RET
TEXT syncatomic·SwapUint32(SB), NOSPLIT, $0-20
GO_ARGS
JMP syncatomic·SwapInt32(SB)
TEXT syncatomic·SwapUint64(SB), NOSPLIT, $0-24
GO_ARGS
JMP syncatomic·SwapInt64(SB)
TEXT syncatomic·SwapUintptr(SB), NOSPLIT, $0-24
GO_ARGS
JMP syncatomic·SwapInt64(SB)
// Add
TEXT syncatomic·AddInt32(SB), NOSPLIT, $0-20
GO_ARGS
MOVD $__tsan_go_atomic32_fetch_add(SB), R1
BL racecallatomic<>(SB)
// TSan performed fetch_add, but Go needs add_fetch.
MOVW add+8(FP), R0
MOVW ret+16(FP), R1
ADD R0, R1, R0
MOVW R0, ret+16(FP)
RET
TEXT syncatomic·AddInt64(SB), NOSPLIT, $0-24
GO_ARGS
MOVD $__tsan_go_atomic64_fetch_add(SB), R1
BL racecallatomic<>(SB)
// TSan performed fetch_add, but Go needs add_fetch.
MOVD add+8(FP), R0
MOVD ret+16(FP), R1
ADD R0, R1, R0
MOVD R0, ret+16(FP)
RET
TEXT syncatomic·AddUint32(SB), NOSPLIT, $0-20
GO_ARGS
JMP syncatomic·AddInt32(SB)
TEXT syncatomic·AddUint64(SB), NOSPLIT, $0-24
GO_ARGS
JMP syncatomic·AddInt64(SB)
TEXT syncatomic·AddUintptr(SB), NOSPLIT, $0-24
GO_ARGS
JMP syncatomic·AddInt64(SB)
// And
TEXT syncatomic·AndInt32(SB), NOSPLIT, $0-20
GO_ARGS
MOVD $__tsan_go_atomic32_fetch_and(SB), R1
BL racecallatomic<>(SB)
RET
TEXT syncatomic·AndInt64(SB), NOSPLIT, $0-24
GO_ARGS
MOVD $__tsan_go_atomic64_fetch_and(SB), R1
BL racecallatomic<>(SB)
RET
TEXT syncatomic·AndUint32(SB), NOSPLIT, $0-20
GO_ARGS
JMP syncatomic·AndInt32(SB)
TEXT syncatomic·AndUint64(SB), NOSPLIT, $0-24
GO_ARGS
JMP syncatomic·AndInt64(SB)
TEXT syncatomic·AndUintptr(SB), NOSPLIT, $0-24
GO_ARGS
JMP syncatomic·AndInt64(SB)
// Or
TEXT syncatomic·OrInt32(SB), NOSPLIT, $0-20
GO_ARGS
MOVD $__tsan_go_atomic32_fetch_or(SB), R1
BL racecallatomic<>(SB)
RET
TEXT syncatomic·OrInt64(SB), NOSPLIT, $0-24
GO_ARGS
MOVD $__tsan_go_atomic64_fetch_or(SB), R1
BL racecallatomic<>(SB)
RET
TEXT syncatomic·OrUint32(SB), NOSPLIT, $0-20
GO_ARGS
JMP syncatomic·OrInt32(SB)
TEXT syncatomic·OrUint64(SB), NOSPLIT, $0-24
GO_ARGS
JMP syncatomic·OrInt64(SB)
TEXT syncatomic·OrUintptr(SB), NOSPLIT, $0-24
GO_ARGS
JMP syncatomic·OrInt64(SB)
// CompareAndSwap
TEXT syncatomic·CompareAndSwapInt32(SB), NOSPLIT, $0-17
GO_ARGS
MOVD $__tsan_go_atomic32_compare_exchange(SB), R1
BL racecallatomic<>(SB)
RET
TEXT syncatomic·CompareAndSwapInt64(SB), NOSPLIT, $0-25
GO_ARGS
MOVD $__tsan_go_atomic64_compare_exchange(SB), R1
BL racecallatomic<>(SB)
RET
TEXT syncatomic·CompareAndSwapUint32(SB), NOSPLIT, $0-17
GO_ARGS
JMP syncatomic·CompareAndSwapInt32(SB)
TEXT syncatomic·CompareAndSwapUint64(SB), NOSPLIT, $0-25
GO_ARGS
JMP syncatomic·CompareAndSwapInt64(SB)
TEXT syncatomic·CompareAndSwapUintptr(SB), NOSPLIT, $0-25
GO_ARGS
JMP syncatomic·CompareAndSwapInt64(SB)
// Common code for atomic operations. Calls R1.
TEXT racecallatomic<>(SB), NOSPLIT, $0
MOVD 24(R15), R5 // Address (arg1, after 2xBL).
// If we pass an invalid pointer to the TSan runtime, it will cause a
// "fatal error: unknown caller pc". So trigger a SEGV here instead.
MOVB (R5), R0
MOVD runtime·racearenastart(SB), R0
CMPUBLT R5, R0, racecallatomic_data // Before racearena start?
MOVD runtime·racearenaend(SB), R0
CMPUBLT R5, R0, racecallatomic_ok // Before racearena end?
racecallatomic_data:
MOVD runtime·racedatastart(SB), R0
CMPUBLT R5, R0, racecallatomic_ignore // Before racedata start?
MOVD runtime·racedataend(SB), R0
CMPUBGE R5, R0, racecallatomic_ignore // At or after racearena end?
racecallatomic_ok:
MOVD g_racectx(g), R2 // ThreadState *.
MOVD 8(R15), R3 // Caller PC.
MOVD R14, R4 // PC.
ADD $24, R15, R5 // Arguments.
// Tail call fails to restore R15, so use a normal one.
BL racecall<>(SB)
RET
racecallatomic_ignore:
// Call __tsan_go_ignore_sync_begin to ignore synchronization during
// the atomic op. An attempt to synchronize on the address would cause
// a crash.
MOVD R1, R6 // Save target function.
MOVD R14, R7 // Save PC.
MOVD $__tsan_go_ignore_sync_begin(SB), R1
MOVD g_racectx(g), R2 // ThreadState *.
BL racecall<>(SB)
MOVD R6, R1 // Restore target function.
MOVD g_racectx(g), R2 // ThreadState *.
MOVD 8(R15), R3 // Caller PC.
MOVD R7, R4 // PC.
ADD $24, R15, R5 // Arguments.
BL racecall<>(SB)
MOVD $__tsan_go_ignore_sync_end(SB), R1
MOVD g_racectx(g), R2 // ThreadState *.
BL racecall<>(SB)
RET
// func runtime·racecall(void(*f)(...), ...)
// Calls C function f from race runtime and passes up to 4 arguments to it.
// The arguments are never heap-object-preserving pointers, so we pretend there
// are no arguments.
TEXT runtime·racecall(SB), NOSPLIT, $0-0
MOVD fn+0(FP), R1
MOVD arg0+8(FP), R2
MOVD arg1+16(FP), R3
MOVD arg2+24(FP), R4
MOVD arg3+32(FP), R5
JMP racecall<>(SB)
// Switches SP to g0 stack and calls R1. Arguments are already set.
TEXT racecall<>(SB), NOSPLIT, $0-0
BL runtime·save_g(SB) // Save g for callbacks.
MOVD R15, R7 // Save SP.
MOVD g_m(g), R8 // R8 = thread.
MOVD m_g0(R8), R8 // R8 = g0.
CMPBEQ R8, g, call // Already on g0?
MOVD (g_sched+gobuf_sp)(R8), R15 // Switch SP to g0.
call: SUB $160, R15 // Allocate C frame.
BL R1 // Call C code.
MOVD R7, R15 // Restore SP.
RET // Return to Go.
// C->Go callback thunk that allows to call runtime·racesymbolize from C
// code. racecall has only switched SP, finish g->g0 switch by setting correct
// g. R2 contains command code, R3 contains command-specific context. See
// racecallback for command codes.
TEXT runtime·racecallbackthunk(SB), NOSPLIT|NOFRAME, $0
STMG R6, R15, 48(R15) // Save non-volatile regs.
BL runtime·load_g(SB) // Saved by racecall.
CMPBNE R2, $0, rest // raceGetProcCmd?
MOVD g_m(g), R2 // R2 = thread.
MOVD m_p(R2), R2 // R2 = processor.
MVC $8, p_raceprocctx(R2), (R3) // *R3 = ThreadState *.
LMG 48(R15), R6, R15 // Restore non-volatile regs.
BR R14 // Return to C.
rest: MOVD g_m(g), R4 // R4 = current thread.
MOVD m_g0(R4), g // Switch to g0.
SUB $24, R15 // Allocate Go argument slots.
STMG R2, R3, 8(R15) // Fill Go frame.
BL runtime·racecallback(SB) // Call Go code.
LMG 72(R15), R6, R15 // Restore non-volatile regs.
BR R14 // Return to C.