gotosocial/vendor/modernc.org/libc/printf.go

613 lines
19 KiB
Go
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright 2020 The Libc Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package libc // import "modernc.org/libc"
import (
"bytes"
"fmt"
"strconv"
"strings"
"unsafe"
)
const (
modNone = iota
modHH
modH
modL
modLL
modLD
modQ
modCapitalL
modJ
modZ
modCapitalZ
modT
mod32
mod64
)
// Format of the format string
//
// The format string is a character string, beginning and ending in its initial
// shift state, if any. The format string is composed of zero or more
// directives: ordinary characters (not %), which are copied unchanged to
// the output stream; and conversion specifications, each of which results in
// fetching zero or more subsequent arguments.
func printf(format, args uintptr) []byte {
format0 := format
args0 := args
buf := bytes.NewBuffer(nil)
for {
switch c := *(*byte)(unsafe.Pointer(format)); c {
case '%':
format = printfConversion(buf, format, &args)
case 0:
if dmesgs {
dmesg("%v: %q, %#x -> %q", origin(1), GoString(format0), args0, buf.Bytes())
}
return buf.Bytes()
default:
format++
buf.WriteByte(c)
}
}
}
// Each conversion specification is introduced by the character %, and ends
// with a conversion specifier. In between there may be (in this order) zero
// or more flags, an optional minimum field width, an optional precision and
// an optional length modifier.
func printfConversion(buf *bytes.Buffer, format uintptr, args *uintptr) uintptr {
format++ // '%'
spec := "%"
// Flags characters
//
// The character % is followed by zero or more of the following flags:
flags:
for {
switch c := *(*byte)(unsafe.Pointer(format)); c {
case '#':
// The value should be converted to an "alternate form". For o conversions,
// the first character of the output string is made zero (by prefixing a 0 if
// it was not zero already). For x and X conversions, a nonzero result has
// the string "0x" (or "0X" for X conversions) prepended to it. For a, A, e,
// E, f, F, g, and G conversions, the result will always contain a decimal
// point, even if no digits follow it (normally, a decimal point appears in the
// results of those conversions only if a digit follows). For g and G
// conversions, trailing zeros are not removed from the result as they would
// otherwise be. For other conversions, the result is undefined.
format++
spec += "#"
case '0':
// The value should be zero padded. For d, i, o, u, x, X, a, A, e, E, f, F,
// g, and G conversions, the converted value is padded on the left with zeros
// rather than blanks. If the 0 and - flags both appear, the 0 flag is
// ignored. If a precision is given with a numeric conversion (d, i, o, u, x,
// and X), the 0 flag is ignored. For other conversions, the behav ior is
// undefined.
format++
spec += "0"
case '-':
// The converted value is to be left adjusted on the field boundary. (The
// default is right justification.) The converted value is padded on the right
// with blanks, rather than on the left with blanks or zeros. A - overrides a
// 0 if both are given.
format++
spec += "-"
case ' ':
// A blank should be left before a positive number (or empty string) produced
// by a signed conversion.
format++
spec += " "
case '+':
// A sign (+ or -) should always be placed before a number produced by a signed
// conversion. By default, a sign is used only for negative numbers. A +
// overrides a space if both are used.
format++
spec += "+"
default:
break flags
}
}
format, width, hasWidth := parseFieldWidth(format)
if hasWidth {
spec += strconv.Itoa(width)
}
format, prec, hasPrecision := parsePrecision(format, args)
format, mod := parseLengthModifier(format)
var str string
more:
// Conversion specifiers
//
// A character that specifies the type of conversion to be applied. The
// conversion specifiers and their meanings are:
switch c := *(*byte)(unsafe.Pointer(format)); c {
case 'd', 'i':
// The int argument is converted to signed decimal notation. The precision,
// if any, gives the minimum number of digits that must appear; if the
// converted value requires fewer digits, it is padded on the left with zeros.
// The default precision is 1. When 0 is printed with an explicit precision 0,
// the output is empty.
format++
var arg int64
switch mod {
case modNone, modL, modLL, mod64:
arg = VaInt64(args)
case modH:
arg = int64(int16(VaInt32(args)))
case modHH:
arg = int64(int8(VaInt32(args)))
case mod32:
arg = int64(VaInt32(args))
default:
panic(todo("", mod))
}
if arg == 0 && hasPrecision && prec == 0 {
break
}
if hasPrecision {
panic(todo("", prec))
}
f := spec + "d"
str = fmt.Sprintf(f, arg)
case 'u':
// The unsigned int argument is converted to unsigned decimal notation. The
// precision, if any, gives the minimum number of digits that must appear; if
// the converted value requires fewer digits, it is padded on the left with
// zeros. The default precision is 1. When 0 is printed with an explicit
// precision 0, the output is empty.
format++
var arg uint64
switch mod {
case modNone:
arg = uint64(VaUint32(args))
case modL, modLL, mod64:
arg = VaUint64(args)
case modH:
arg = uint64(uint16(VaInt32(args)))
case modHH:
arg = uint64(uint8(VaInt32(args)))
case mod32:
arg = uint64(VaInt32(args))
default:
panic(todo("", mod))
}
if arg == 0 && hasPrecision && prec == 0 {
break
}
if hasPrecision {
panic(todo("", prec))
}
f := spec + "d"
str = fmt.Sprintf(f, arg)
case 'o':
// The unsigned int argument is converted to unsigned octal notation. The
// precision, if any, gives the minimum number of digits that must appear; if
// the converted value requires fewer digits, it is padded on the left with
// zeros. The default precision is 1. When 0 is printed with an explicit
// precision 0, the output is empty.
format++
var arg uint64
switch mod {
case modNone:
arg = uint64(VaUint32(args))
case modL, modLL, mod64:
arg = VaUint64(args)
case modH:
arg = uint64(uint16(VaInt32(args)))
case modHH:
arg = uint64(uint8(VaInt32(args)))
case mod32:
arg = uint64(VaInt32(args))
default:
panic(todo("", mod))
}
if arg == 0 && hasPrecision && prec == 0 {
break
}
if hasPrecision {
panic(todo("", prec))
}
f := spec + "o"
str = fmt.Sprintf(f, arg)
case 'I':
if !isWindows {
panic(todo("%#U", c))
}
format++
switch c = *(*byte)(unsafe.Pointer(format)); c {
case 'x', 'X':
// https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-wsprintfa
//
// Ix, IX
//
// 64-bit unsigned hexadecimal integer in lowercase or uppercase on 64-bit
// platforms, 32-bit unsigned hexadecimal integer in lowercase or uppercase on
// 32-bit platforms.
if unsafe.Sizeof(int(0)) == 4 {
mod = mod32
}
case '3':
// https://en.wikipedia.org/wiki/Printf_format_string#Length_field
//
// I32 For integer types, causes printf to expect a 32-bit (double word) integer argument.
format++
switch c = *(*byte)(unsafe.Pointer(format)); c {
case '2':
format++
mod = mod32
goto more
default:
panic(todo("%#U", c))
}
case '6':
// https://en.wikipedia.org/wiki/Printf_format_string#Length_field
//
// I64 For integer types, causes printf to expect a 64-bit (quad word) integer argument.
format++
switch c = *(*byte)(unsafe.Pointer(format)); c {
case '4':
format++
mod = mod64
goto more
default:
panic(todo("%#U", c))
}
default:
panic(todo("%#U", c))
}
fallthrough
case 'X':
fallthrough
case 'x':
// The unsigned int argument is converted to unsigned hexadecimal notation.
// The letters abcdef are used for x conversions; the letters ABCDEF are used
// for X conversions. The precision, if any, gives the minimum number of
// digits that must appear; if the converted value requires fewer digits, it is
// padded on the left with zeros. The default precision is 1. When 0 is
// printed with an explicit precision 0, the output is empty.
format++
var arg uint64
switch mod {
case modNone:
arg = uint64(VaUint32(args))
case modL, modLL, mod64:
arg = VaUint64(args)
case modH:
arg = uint64(uint16(VaInt32(args)))
case modHH:
arg = uint64(uint8(VaInt32(args)))
case mod32:
arg = uint64(VaInt32(args))
default:
panic(todo("", mod))
}
if arg == 0 && hasPrecision && prec == 0 {
break
}
if strings.Contains(spec, "#") && arg == 0 {
spec = strings.ReplaceAll(spec, "#", "")
}
var f string
switch {
case hasPrecision:
f = fmt.Sprintf("%s.%d%c", spec, prec, c)
default:
f = spec + string(c)
}
str = fmt.Sprintf(f, arg)
case 'e', 'E':
// The double argument is rounded and converted in the style [-]d.ddde±dd where
// there is one digit before the decimal-point character and the number of
// digits after it is equal to the precision; if the precision is missing, it
// is taken as 6; if the precision is zero, no decimal-point character appears.
// An E conversion uses the letter E (rather than e) to intro duce the
// exponent. The exponent always contains at least two digits; if the value is
// zero, the exponent is 00.
format++
arg := VaFloat64(args)
if !hasPrecision {
prec = 6
}
f := fmt.Sprintf("%s.%d%c", spec, prec, c)
str = fmt.Sprintf(f, arg)
case 'f', 'F':
// The double argument is rounded and converted to decimal notation in the
// style [-]ddd.ddd, where the number of digits after the decimal-point
// character is equal to the precision specification. If the precision
// is missing, it is taken as 6; if the precision is explicitly zero, no
// decimal-point character appears. If a decimal point appears, at least one
// digit appears before it.
format++
arg := VaFloat64(args)
if !hasPrecision {
prec = 6
}
f := fmt.Sprintf("%s.%d%c", spec, prec, c)
str = fixNanInf(fmt.Sprintf(f, arg))
case 'G':
fallthrough
case 'g':
// The double argument is converted in style f or e (or F or E for G
// conversions). The precision specifies the number of significant digits. If
// the precision is missing, 6 digits are given; if the precision is zero, it
// is treated as 1. Style e is used if the exponent from its conversion is
// less than -4 or greater than or equal to the precision. Trailing zeros are
// removed from the fractional part of the result; a decimal point appears only
// if it is followed by at least one digit.
format++
arg := VaFloat64(args)
if !hasPrecision {
prec = 6
}
if prec == 0 {
prec = 1
}
f := fmt.Sprintf("%s.%d%c", spec, prec, c)
str = fixNanInf(fmt.Sprintf(f, arg))
case 's':
// If no l modifier is present: the const char * argument is expected to be a
// pointer to an array of character type (pointer to a string). Characters
// from the array are written up to (but not including) a terminating null byte
// ('\0'); if a precision is specified, no more than the number specified are
// written. If a precision is given, no null byte need be present; if
// the precision is not specified, or is greater than the size of the array,
// the array must contain a terminating null byte.
//
// If an l modifier is present: the const wchar_t * argument is expected
// to be a pointer to an array of wide characters. Wide characters from the
// array are converted to multibyte characters (each by a call to the
// wcrtomb(3) function, with a conversion state starting in the initial state
// before the first wide character), up to and including a terminating null
// wide character. The resulting multibyte characters are written up to
// (but not including) the terminating null byte. If a precision is specified,
// no more bytes than the number specified are written, but no partial
// multibyte characters are written. Note that the precision determines the
// number of bytes written, not the number of wide characters or screen
// positions. The array must contain a terminating null wide character,
// unless a precision is given and it is so small that the number of bytes
// written exceeds it before the end of the array is reached.
format++
arg := VaUintptr(args)
switch mod {
case modNone:
var f string
switch {
case hasPrecision:
f = fmt.Sprintf("%s.%ds", spec, prec)
str = fmt.Sprintf(f, GoString(arg))
default:
f = spec + "s"
str = fmt.Sprintf(f, GoString(arg))
}
default:
panic(todo(""))
}
case 'p':
// The void * pointer argument is printed in hexadecimal (as if by %#x or
// %#lx).
format++
arg := VaUintptr(args)
buf.WriteString("0x")
buf.WriteString(strconv.FormatInt(int64(arg), 16))
case 'c':
// If no l modifier is present, the int argument is converted to an unsigned
// char, and the resulting character is written. If an l modifier is present,
// the wint_t (wide character) ar gument is converted to a multibyte sequence
// by a call to the wcrtomb(3) function, with a conversion state starting in
// the initial state, and the resulting multibyte string is writ ten.
format++
switch mod {
case modNone:
arg := VaInt32(args)
buf.WriteByte(byte(arg))
default:
panic(todo(""))
}
case '%':
// A '%' is written. No argument is converted. The complete conversion
// specification is '%%'.
format++
buf.WriteByte('%')
default:
panic(todo("%#U", c))
}
buf.WriteString(str)
return format
}
// Field width
//
// An optional decimal digit string (with nonzero first digit) specifying a
// minimum field width. If the converted value has fewer characters than the
// field width, it will be padded with spa ces on the left (or right, if the
// left-adjustment flag has been given). Instead of a decimal digit string one
// may write "*" or "*m$" (for some decimal integer m) to specify that the
// field width is given in the next argument, or in the m-th argument,
// respectively, which must be of type int. A negative field width is taken as
// a '-' flag followed by a positive field width. In no case does a
// nonexistent or small field width cause truncation of a field; if the result
// of a conversion is wider than the field width, the field is expanded to
// contain the conversion result.
func parseFieldWidth(format uintptr) (_ uintptr, n int, ok bool) {
first := true
for {
var digit int
switch c := *(*byte)(unsafe.Pointer(format)); {
case first && c == '0':
return format, n, ok
case first && c == '*':
panic(todo(""))
case c >= '0' && c <= '9':
format++
ok = true
first = false
digit = int(c) - '0'
default:
return format, n, ok
}
n0 := n
n = 10*n + digit
if n < n0 {
panic(todo(""))
}
}
}
// Precision
//
// An optional precision, in the form of a period ('.') followed by an
// optional decimal digit string. Instead of a decimal digit string one may
// write "*" or "*m$" (for some decimal integer m) to specify that the
// precision is given in the next argument, or in the m-th argument,
// respectively, which must be of type int. If the precision is given as just
// '.', the precision is taken to be zero. A negative precision is taken
// as if the precision were omitted. This gives the minimum number of digits
// to appear for d, i, o, u, x, and X conversions, the number of digits to
// appear after the radix character for a, A, e, E, f, and F conversions, the
// maximum number of significant digits for g and G conversions, or the maximum
// number of characters to be printed from a string for s and S conversions.
func parsePrecision(format uintptr, args *uintptr) (_ uintptr, n int, ok bool) {
for {
switch c := *(*byte)(unsafe.Pointer(format)); c {
case '.':
format++
first := true
for {
switch c := *(*byte)(unsafe.Pointer(format)); {
case first && c == '*':
format++
n = int(VaInt32(args))
return format, n, true
case c >= '0' && c <= '9':
format++
first = false
n0 := n
n = 10*n + (int(c) - '0')
if n < n0 {
panic(todo(""))
}
default:
return format, n, true
}
}
default:
return format, 0, false
}
}
}
// Length modifier
//
// Here, "integer conversion" stands for d, i, o, u, x, or X conversion.
//
// hh A following integer conversion corresponds to a signed char or
// unsigned char argument, or a following n conversion corresponds to a pointer
// to a signed char argument.
//
// h A following integer conversion corresponds to a short int or unsigned
// short int argument, or a following n conversion corresponds to a pointer to
// a short int argument.
//
// l (ell) A following integer conversion corresponds to a long int or
// unsigned long int argument, or a following n conversion corresponds to a
// pointer to a long int argument, or a fol lowing c conversion corresponds to
// a wint_t argument, or a following s conversion corresponds to a pointer to
// wchar_t argument.
//
// ll (ell-ell). A following integer conversion corresponds to a long long
// int or unsigned long long int argument, or a following n conversion
// corresponds to a pointer to a long long int argument.
//
// q A synonym for ll. This is a nonstandard extension, derived from BSD;
// avoid its use in new code.
//
// L A following a, A, e, E, f, F, g, or G conversion corresponds to a
// long double argument. (C99 allows %LF, but SUSv2 does not.)
//
// j A following integer conversion corresponds to an intmax_t or
// uintmax_t argument, or a following n conversion corresponds to a pointer to
// an intmax_t argument.
//
// z A following integer conversion corresponds to a size_t or ssize_t
// argument, or a following n conversion corresponds to a pointer to a size_t
// argument.
//
// Z A nonstandard synonym for z that predates the appearance of z. Do
// not use in new code.
//
// t A following integer conversion corresponds to a ptrdiff_t argument,
// or a following n conversion corresponds to a pointer to a ptrdiff_t
// argument.
func parseLengthModifier(format uintptr) (_ uintptr, n int) {
switch c := *(*byte)(unsafe.Pointer(format)); c {
case 'h':
format++
n = modH
switch c := *(*byte)(unsafe.Pointer(format)); c {
case 'h':
format++
n = modHH
}
return format, n
case 'l':
format++
n = modL
switch c := *(*byte)(unsafe.Pointer(format)); c {
case 'l':
format++
n = modLL
}
return format, n
case 'q':
panic(todo(""))
case 'L':
format++
n = modLD
return format, n
case 'j':
panic(todo(""))
case 'z':
panic(todo(""))
case 'Z':
panic(todo(""))
case 't':
panic(todo(""))
default:
return format, 0
}
}
func fixNanInf(s string) string {
switch s {
case "NaN":
return "nan"
case "+Inf", "-Inf":
return "inf"
default:
return s
}
}