gotosocial/vendor/github.com/twitchyliquid64/golang-asm/obj/mips/asm0.go

2109 lines
54 KiB
Go

// cmd/9l/optab.c, cmd/9l/asmout.c from Vita Nuova.
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2008 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2008 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package mips
import (
"github.com/twitchyliquid64/golang-asm/obj"
"github.com/twitchyliquid64/golang-asm/objabi"
"github.com/twitchyliquid64/golang-asm/sys"
"fmt"
"log"
"sort"
)
// ctxt0 holds state while assembling a single function.
// Each function gets a fresh ctxt0.
// This allows for multiple functions to be safely concurrently assembled.
type ctxt0 struct {
ctxt *obj.Link
newprog obj.ProgAlloc
cursym *obj.LSym
autosize int32
instoffset int64
pc int64
}
// Instruction layout.
const (
mips64FuncAlign = 8
)
const (
r0iszero = 1
)
type Optab struct {
as obj.As
a1 uint8
a2 uint8
a3 uint8
type_ int8
size int8
param int16
family sys.ArchFamily // 0 means both sys.MIPS and sys.MIPS64
flag uint8
}
const (
// Optab.flag
NOTUSETMP = 1 << iota // p expands to multiple instructions, but does NOT use REGTMP
)
var optab = []Optab{
{obj.ATEXT, C_LEXT, C_NONE, C_TEXTSIZE, 0, 0, 0, sys.MIPS64, 0},
{obj.ATEXT, C_ADDR, C_NONE, C_TEXTSIZE, 0, 0, 0, 0, 0},
{AMOVW, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0},
{AMOVV, C_REG, C_NONE, C_REG, 1, 4, 0, sys.MIPS64, 0},
{AMOVB, C_REG, C_NONE, C_REG, 12, 8, 0, 0, NOTUSETMP},
{AMOVBU, C_REG, C_NONE, C_REG, 13, 4, 0, 0, 0},
{AMOVWU, C_REG, C_NONE, C_REG, 14, 8, 0, sys.MIPS64, NOTUSETMP},
{ASUB, C_REG, C_REG, C_REG, 2, 4, 0, 0, 0},
{ASUBV, C_REG, C_REG, C_REG, 2, 4, 0, sys.MIPS64, 0},
{AADD, C_REG, C_REG, C_REG, 2, 4, 0, 0, 0},
{AADDV, C_REG, C_REG, C_REG, 2, 4, 0, sys.MIPS64, 0},
{AAND, C_REG, C_REG, C_REG, 2, 4, 0, 0, 0},
{ASUB, C_REG, C_NONE, C_REG, 2, 4, 0, 0, 0},
{ASUBV, C_REG, C_NONE, C_REG, 2, 4, 0, sys.MIPS64, 0},
{AADD, C_REG, C_NONE, C_REG, 2, 4, 0, 0, 0},
{AADDV, C_REG, C_NONE, C_REG, 2, 4, 0, sys.MIPS64, 0},
{AAND, C_REG, C_NONE, C_REG, 2, 4, 0, 0, 0},
{ACMOVN, C_REG, C_REG, C_REG, 2, 4, 0, 0, 0},
{ANEGW, C_REG, C_NONE, C_REG, 2, 4, 0, 0, 0},
{ANEGV, C_REG, C_NONE, C_REG, 2, 4, 0, sys.MIPS64, 0},
{ASLL, C_REG, C_NONE, C_REG, 9, 4, 0, 0, 0},
{ASLL, C_REG, C_REG, C_REG, 9, 4, 0, 0, 0},
{ASLLV, C_REG, C_NONE, C_REG, 9, 4, 0, sys.MIPS64, 0},
{ASLLV, C_REG, C_REG, C_REG, 9, 4, 0, sys.MIPS64, 0},
{ACLO, C_REG, C_NONE, C_REG, 9, 4, 0, 0, 0},
{AADDF, C_FREG, C_NONE, C_FREG, 32, 4, 0, 0, 0},
{AADDF, C_FREG, C_REG, C_FREG, 32, 4, 0, 0, 0},
{ACMPEQF, C_FREG, C_REG, C_NONE, 32, 4, 0, 0, 0},
{AABSF, C_FREG, C_NONE, C_FREG, 33, 4, 0, 0, 0},
{AMOVVF, C_FREG, C_NONE, C_FREG, 33, 4, 0, sys.MIPS64, 0},
{AMOVF, C_FREG, C_NONE, C_FREG, 33, 4, 0, 0, 0},
{AMOVD, C_FREG, C_NONE, C_FREG, 33, 4, 0, 0, 0},
{AMOVW, C_REG, C_NONE, C_SEXT, 7, 4, REGSB, sys.MIPS64, 0},
{AMOVWU, C_REG, C_NONE, C_SEXT, 7, 4, REGSB, sys.MIPS64, 0},
{AMOVV, C_REG, C_NONE, C_SEXT, 7, 4, REGSB, sys.MIPS64, 0},
{AMOVB, C_REG, C_NONE, C_SEXT, 7, 4, REGSB, sys.MIPS64, 0},
{AMOVBU, C_REG, C_NONE, C_SEXT, 7, 4, REGSB, sys.MIPS64, 0},
{AMOVWL, C_REG, C_NONE, C_SEXT, 7, 4, REGSB, sys.MIPS64, 0},
{AMOVVL, C_REG, C_NONE, C_SEXT, 7, 4, REGSB, sys.MIPS64, 0},
{AMOVW, C_REG, C_NONE, C_SAUTO, 7, 4, REGSP, 0, 0},
{AMOVWU, C_REG, C_NONE, C_SAUTO, 7, 4, REGSP, sys.MIPS64, 0},
{AMOVV, C_REG, C_NONE, C_SAUTO, 7, 4, REGSP, sys.MIPS64, 0},
{AMOVB, C_REG, C_NONE, C_SAUTO, 7, 4, REGSP, 0, 0},
{AMOVBU, C_REG, C_NONE, C_SAUTO, 7, 4, REGSP, 0, 0},
{AMOVWL, C_REG, C_NONE, C_SAUTO, 7, 4, REGSP, 0, 0},
{AMOVVL, C_REG, C_NONE, C_SAUTO, 7, 4, REGSP, sys.MIPS64, 0},
{AMOVW, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, 0, 0},
{AMOVWU, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, sys.MIPS64, 0},
{AMOVV, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, sys.MIPS64, 0},
{AMOVB, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, 0, 0},
{AMOVBU, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, 0, 0},
{AMOVWL, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, 0, 0},
{AMOVVL, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, sys.MIPS64, 0},
{ASC, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, 0, 0},
{ASCV, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, sys.MIPS64, 0},
{AMOVW, C_SEXT, C_NONE, C_REG, 8, 4, REGSB, sys.MIPS64, 0},
{AMOVWU, C_SEXT, C_NONE, C_REG, 8, 4, REGSB, sys.MIPS64, 0},
{AMOVV, C_SEXT, C_NONE, C_REG, 8, 4, REGSB, sys.MIPS64, 0},
{AMOVB, C_SEXT, C_NONE, C_REG, 8, 4, REGSB, sys.MIPS64, 0},
{AMOVBU, C_SEXT, C_NONE, C_REG, 8, 4, REGSB, sys.MIPS64, 0},
{AMOVWL, C_SEXT, C_NONE, C_REG, 8, 4, REGSB, sys.MIPS64, 0},
{AMOVVL, C_SEXT, C_NONE, C_REG, 8, 4, REGSB, sys.MIPS64, 0},
{AMOVW, C_SAUTO, C_NONE, C_REG, 8, 4, REGSP, 0, 0},
{AMOVWU, C_SAUTO, C_NONE, C_REG, 8, 4, REGSP, sys.MIPS64, 0},
{AMOVV, C_SAUTO, C_NONE, C_REG, 8, 4, REGSP, sys.MIPS64, 0},
{AMOVB, C_SAUTO, C_NONE, C_REG, 8, 4, REGSP, 0, 0},
{AMOVBU, C_SAUTO, C_NONE, C_REG, 8, 4, REGSP, 0, 0},
{AMOVWL, C_SAUTO, C_NONE, C_REG, 8, 4, REGSP, 0, 0},
{AMOVVL, C_SAUTO, C_NONE, C_REG, 8, 4, REGSP, sys.MIPS64, 0},
{AMOVW, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, 0, 0},
{AMOVWU, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, sys.MIPS64, 0},
{AMOVV, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, sys.MIPS64, 0},
{AMOVB, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, 0, 0},
{AMOVBU, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, 0, 0},
{AMOVWL, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, 0, 0},
{AMOVVL, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, sys.MIPS64, 0},
{ALL, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, 0, 0},
{ALLV, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, sys.MIPS64, 0},
{AMOVW, C_REG, C_NONE, C_LEXT, 35, 12, REGSB, sys.MIPS64, 0},
{AMOVWU, C_REG, C_NONE, C_LEXT, 35, 12, REGSB, sys.MIPS64, 0},
{AMOVV, C_REG, C_NONE, C_LEXT, 35, 12, REGSB, sys.MIPS64, 0},
{AMOVB, C_REG, C_NONE, C_LEXT, 35, 12, REGSB, sys.MIPS64, 0},
{AMOVBU, C_REG, C_NONE, C_LEXT, 35, 12, REGSB, sys.MIPS64, 0},
{AMOVW, C_REG, C_NONE, C_LAUTO, 35, 12, REGSP, 0, 0},
{AMOVWU, C_REG, C_NONE, C_LAUTO, 35, 12, REGSP, sys.MIPS64, 0},
{AMOVV, C_REG, C_NONE, C_LAUTO, 35, 12, REGSP, sys.MIPS64, 0},
{AMOVB, C_REG, C_NONE, C_LAUTO, 35, 12, REGSP, 0, 0},
{AMOVBU, C_REG, C_NONE, C_LAUTO, 35, 12, REGSP, 0, 0},
{AMOVW, C_REG, C_NONE, C_LOREG, 35, 12, REGZERO, 0, 0},
{AMOVWU, C_REG, C_NONE, C_LOREG, 35, 12, REGZERO, sys.MIPS64, 0},
{AMOVV, C_REG, C_NONE, C_LOREG, 35, 12, REGZERO, sys.MIPS64, 0},
{AMOVB, C_REG, C_NONE, C_LOREG, 35, 12, REGZERO, 0, 0},
{AMOVBU, C_REG, C_NONE, C_LOREG, 35, 12, REGZERO, 0, 0},
{ASC, C_REG, C_NONE, C_LOREG, 35, 12, REGZERO, 0, 0},
{AMOVW, C_REG, C_NONE, C_ADDR, 50, 8, 0, sys.MIPS, 0},
{AMOVW, C_REG, C_NONE, C_ADDR, 50, 12, 0, sys.MIPS64, 0},
{AMOVWU, C_REG, C_NONE, C_ADDR, 50, 12, 0, sys.MIPS64, 0},
{AMOVV, C_REG, C_NONE, C_ADDR, 50, 12, 0, sys.MIPS64, 0},
{AMOVB, C_REG, C_NONE, C_ADDR, 50, 8, 0, sys.MIPS, 0},
{AMOVB, C_REG, C_NONE, C_ADDR, 50, 12, 0, sys.MIPS64, 0},
{AMOVBU, C_REG, C_NONE, C_ADDR, 50, 8, 0, sys.MIPS, 0},
{AMOVBU, C_REG, C_NONE, C_ADDR, 50, 12, 0, sys.MIPS64, 0},
{AMOVW, C_REG, C_NONE, C_TLS, 53, 8, 0, 0, NOTUSETMP},
{AMOVWU, C_REG, C_NONE, C_TLS, 53, 8, 0, sys.MIPS64, NOTUSETMP},
{AMOVV, C_REG, C_NONE, C_TLS, 53, 8, 0, sys.MIPS64, NOTUSETMP},
{AMOVB, C_REG, C_NONE, C_TLS, 53, 8, 0, 0, NOTUSETMP},
{AMOVBU, C_REG, C_NONE, C_TLS, 53, 8, 0, 0, NOTUSETMP},
{AMOVW, C_LEXT, C_NONE, C_REG, 36, 12, REGSB, sys.MIPS64, 0},
{AMOVWU, C_LEXT, C_NONE, C_REG, 36, 12, REGSB, sys.MIPS64, 0},
{AMOVV, C_LEXT, C_NONE, C_REG, 36, 12, REGSB, sys.MIPS64, 0},
{AMOVB, C_LEXT, C_NONE, C_REG, 36, 12, REGSB, sys.MIPS64, 0},
{AMOVBU, C_LEXT, C_NONE, C_REG, 36, 12, REGSB, sys.MIPS64, 0},
{AMOVW, C_LAUTO, C_NONE, C_REG, 36, 12, REGSP, 0, 0},
{AMOVWU, C_LAUTO, C_NONE, C_REG, 36, 12, REGSP, sys.MIPS64, 0},
{AMOVV, C_LAUTO, C_NONE, C_REG, 36, 12, REGSP, sys.MIPS64, 0},
{AMOVB, C_LAUTO, C_NONE, C_REG, 36, 12, REGSP, 0, 0},
{AMOVBU, C_LAUTO, C_NONE, C_REG, 36, 12, REGSP, 0, 0},
{AMOVW, C_LOREG, C_NONE, C_REG, 36, 12, REGZERO, 0, 0},
{AMOVWU, C_LOREG, C_NONE, C_REG, 36, 12, REGZERO, sys.MIPS64, 0},
{AMOVV, C_LOREG, C_NONE, C_REG, 36, 12, REGZERO, sys.MIPS64, 0},
{AMOVB, C_LOREG, C_NONE, C_REG, 36, 12, REGZERO, 0, 0},
{AMOVBU, C_LOREG, C_NONE, C_REG, 36, 12, REGZERO, 0, 0},
{AMOVW, C_ADDR, C_NONE, C_REG, 51, 8, 0, sys.MIPS, 0},
{AMOVW, C_ADDR, C_NONE, C_REG, 51, 12, 0, sys.MIPS64, 0},
{AMOVWU, C_ADDR, C_NONE, C_REG, 51, 12, 0, sys.MIPS64, 0},
{AMOVV, C_ADDR, C_NONE, C_REG, 51, 12, 0, sys.MIPS64, 0},
{AMOVB, C_ADDR, C_NONE, C_REG, 51, 8, 0, sys.MIPS, 0},
{AMOVB, C_ADDR, C_NONE, C_REG, 51, 12, 0, sys.MIPS64, 0},
{AMOVBU, C_ADDR, C_NONE, C_REG, 51, 8, 0, sys.MIPS, 0},
{AMOVBU, C_ADDR, C_NONE, C_REG, 51, 12, 0, sys.MIPS64, 0},
{AMOVW, C_TLS, C_NONE, C_REG, 54, 8, 0, 0, NOTUSETMP},
{AMOVWU, C_TLS, C_NONE, C_REG, 54, 8, 0, sys.MIPS64, NOTUSETMP},
{AMOVV, C_TLS, C_NONE, C_REG, 54, 8, 0, sys.MIPS64, NOTUSETMP},
{AMOVB, C_TLS, C_NONE, C_REG, 54, 8, 0, 0, NOTUSETMP},
{AMOVBU, C_TLS, C_NONE, C_REG, 54, 8, 0, 0, NOTUSETMP},
{AMOVW, C_SECON, C_NONE, C_REG, 3, 4, REGSB, sys.MIPS64, 0},
{AMOVV, C_SECON, C_NONE, C_REG, 3, 4, REGSB, sys.MIPS64, 0},
{AMOVW, C_SACON, C_NONE, C_REG, 3, 4, REGSP, 0, 0},
{AMOVV, C_SACON, C_NONE, C_REG, 3, 4, REGSP, sys.MIPS64, 0},
{AMOVW, C_LECON, C_NONE, C_REG, 52, 8, REGSB, sys.MIPS, NOTUSETMP},
{AMOVW, C_LECON, C_NONE, C_REG, 52, 12, REGSB, sys.MIPS64, NOTUSETMP},
{AMOVV, C_LECON, C_NONE, C_REG, 52, 12, REGSB, sys.MIPS64, NOTUSETMP},
{AMOVW, C_LACON, C_NONE, C_REG, 26, 12, REGSP, 0, 0},
{AMOVV, C_LACON, C_NONE, C_REG, 26, 12, REGSP, sys.MIPS64, 0},
{AMOVW, C_ADDCON, C_NONE, C_REG, 3, 4, REGZERO, 0, 0},
{AMOVV, C_ADDCON, C_NONE, C_REG, 3, 4, REGZERO, sys.MIPS64, 0},
{AMOVW, C_ANDCON, C_NONE, C_REG, 3, 4, REGZERO, 0, 0},
{AMOVV, C_ANDCON, C_NONE, C_REG, 3, 4, REGZERO, sys.MIPS64, 0},
{AMOVW, C_STCON, C_NONE, C_REG, 55, 8, 0, 0, NOTUSETMP},
{AMOVV, C_STCON, C_NONE, C_REG, 55, 8, 0, sys.MIPS64, NOTUSETMP},
{AMOVW, C_UCON, C_NONE, C_REG, 24, 4, 0, 0, 0},
{AMOVV, C_UCON, C_NONE, C_REG, 24, 4, 0, sys.MIPS64, 0},
{AMOVW, C_LCON, C_NONE, C_REG, 19, 8, 0, 0, NOTUSETMP},
{AMOVV, C_LCON, C_NONE, C_REG, 19, 8, 0, sys.MIPS64, NOTUSETMP},
{AMOVW, C_HI, C_NONE, C_REG, 20, 4, 0, 0, 0},
{AMOVV, C_HI, C_NONE, C_REG, 20, 4, 0, sys.MIPS64, 0},
{AMOVW, C_LO, C_NONE, C_REG, 20, 4, 0, 0, 0},
{AMOVV, C_LO, C_NONE, C_REG, 20, 4, 0, sys.MIPS64, 0},
{AMOVW, C_REG, C_NONE, C_HI, 21, 4, 0, 0, 0},
{AMOVV, C_REG, C_NONE, C_HI, 21, 4, 0, sys.MIPS64, 0},
{AMOVW, C_REG, C_NONE, C_LO, 21, 4, 0, 0, 0},
{AMOVV, C_REG, C_NONE, C_LO, 21, 4, 0, sys.MIPS64, 0},
{AMUL, C_REG, C_REG, C_NONE, 22, 4, 0, 0, 0},
{AMUL, C_REG, C_REG, C_REG, 22, 4, 0, 0, 0},
{AMULV, C_REG, C_REG, C_NONE, 22, 4, 0, sys.MIPS64, 0},
{AADD, C_ADD0CON, C_REG, C_REG, 4, 4, 0, 0, 0},
{AADD, C_ADD0CON, C_NONE, C_REG, 4, 4, 0, 0, 0},
{AADD, C_ANDCON, C_REG, C_REG, 10, 8, 0, 0, 0},
{AADD, C_ANDCON, C_NONE, C_REG, 10, 8, 0, 0, 0},
{AADDV, C_ADD0CON, C_REG, C_REG, 4, 4, 0, sys.MIPS64, 0},
{AADDV, C_ADD0CON, C_NONE, C_REG, 4, 4, 0, sys.MIPS64, 0},
{AADDV, C_ANDCON, C_REG, C_REG, 10, 8, 0, sys.MIPS64, 0},
{AADDV, C_ANDCON, C_NONE, C_REG, 10, 8, 0, sys.MIPS64, 0},
{AAND, C_AND0CON, C_REG, C_REG, 4, 4, 0, 0, 0},
{AAND, C_AND0CON, C_NONE, C_REG, 4, 4, 0, 0, 0},
{AAND, C_ADDCON, C_REG, C_REG, 10, 8, 0, 0, 0},
{AAND, C_ADDCON, C_NONE, C_REG, 10, 8, 0, 0, 0},
{AADD, C_UCON, C_REG, C_REG, 25, 8, 0, 0, 0},
{AADD, C_UCON, C_NONE, C_REG, 25, 8, 0, 0, 0},
{AADDV, C_UCON, C_REG, C_REG, 25, 8, 0, sys.MIPS64, 0},
{AADDV, C_UCON, C_NONE, C_REG, 25, 8, 0, sys.MIPS64, 0},
{AAND, C_UCON, C_REG, C_REG, 25, 8, 0, 0, 0},
{AAND, C_UCON, C_NONE, C_REG, 25, 8, 0, 0, 0},
{AADD, C_LCON, C_NONE, C_REG, 23, 12, 0, 0, 0},
{AADDV, C_LCON, C_NONE, C_REG, 23, 12, 0, sys.MIPS64, 0},
{AAND, C_LCON, C_NONE, C_REG, 23, 12, 0, 0, 0},
{AADD, C_LCON, C_REG, C_REG, 23, 12, 0, 0, 0},
{AADDV, C_LCON, C_REG, C_REG, 23, 12, 0, sys.MIPS64, 0},
{AAND, C_LCON, C_REG, C_REG, 23, 12, 0, 0, 0},
{ASLL, C_SCON, C_REG, C_REG, 16, 4, 0, 0, 0},
{ASLL, C_SCON, C_NONE, C_REG, 16, 4, 0, 0, 0},
{ASLLV, C_SCON, C_REG, C_REG, 16, 4, 0, sys.MIPS64, 0},
{ASLLV, C_SCON, C_NONE, C_REG, 16, 4, 0, sys.MIPS64, 0},
{ASYSCALL, C_NONE, C_NONE, C_NONE, 5, 4, 0, 0, 0},
{ABEQ, C_REG, C_REG, C_SBRA, 6, 4, 0, 0, 0},
{ABEQ, C_REG, C_NONE, C_SBRA, 6, 4, 0, 0, 0},
{ABLEZ, C_REG, C_NONE, C_SBRA, 6, 4, 0, 0, 0},
{ABFPT, C_NONE, C_NONE, C_SBRA, 6, 8, 0, 0, NOTUSETMP},
{AJMP, C_NONE, C_NONE, C_LBRA, 11, 4, 0, 0, 0},
{AJAL, C_NONE, C_NONE, C_LBRA, 11, 4, 0, 0, 0},
{AJMP, C_NONE, C_NONE, C_ZOREG, 18, 4, REGZERO, 0, 0},
{AJAL, C_NONE, C_NONE, C_ZOREG, 18, 4, REGLINK, 0, 0},
{AMOVW, C_SEXT, C_NONE, C_FREG, 27, 4, REGSB, sys.MIPS64, 0},
{AMOVF, C_SEXT, C_NONE, C_FREG, 27, 4, REGSB, sys.MIPS64, 0},
{AMOVD, C_SEXT, C_NONE, C_FREG, 27, 4, REGSB, sys.MIPS64, 0},
{AMOVW, C_SAUTO, C_NONE, C_FREG, 27, 4, REGSP, sys.MIPS64, 0},
{AMOVF, C_SAUTO, C_NONE, C_FREG, 27, 4, REGSP, 0, 0},
{AMOVD, C_SAUTO, C_NONE, C_FREG, 27, 4, REGSP, 0, 0},
{AMOVW, C_SOREG, C_NONE, C_FREG, 27, 4, REGZERO, sys.MIPS64, 0},
{AMOVF, C_SOREG, C_NONE, C_FREG, 27, 4, REGZERO, 0, 0},
{AMOVD, C_SOREG, C_NONE, C_FREG, 27, 4, REGZERO, 0, 0},
{AMOVW, C_LEXT, C_NONE, C_FREG, 27, 12, REGSB, sys.MIPS64, 0},
{AMOVF, C_LEXT, C_NONE, C_FREG, 27, 12, REGSB, sys.MIPS64, 0},
{AMOVD, C_LEXT, C_NONE, C_FREG, 27, 12, REGSB, sys.MIPS64, 0},
{AMOVW, C_LAUTO, C_NONE, C_FREG, 27, 12, REGSP, sys.MIPS64, 0},
{AMOVF, C_LAUTO, C_NONE, C_FREG, 27, 12, REGSP, 0, 0},
{AMOVD, C_LAUTO, C_NONE, C_FREG, 27, 12, REGSP, 0, 0},
{AMOVW, C_LOREG, C_NONE, C_FREG, 27, 12, REGZERO, sys.MIPS64, 0},
{AMOVF, C_LOREG, C_NONE, C_FREG, 27, 12, REGZERO, 0, 0},
{AMOVD, C_LOREG, C_NONE, C_FREG, 27, 12, REGZERO, 0, 0},
{AMOVF, C_ADDR, C_NONE, C_FREG, 51, 8, 0, sys.MIPS, 0},
{AMOVF, C_ADDR, C_NONE, C_FREG, 51, 12, 0, sys.MIPS64, 0},
{AMOVD, C_ADDR, C_NONE, C_FREG, 51, 8, 0, sys.MIPS, 0},
{AMOVD, C_ADDR, C_NONE, C_FREG, 51, 12, 0, sys.MIPS64, 0},
{AMOVW, C_FREG, C_NONE, C_SEXT, 28, 4, REGSB, sys.MIPS64, 0},
{AMOVF, C_FREG, C_NONE, C_SEXT, 28, 4, REGSB, sys.MIPS64, 0},
{AMOVD, C_FREG, C_NONE, C_SEXT, 28, 4, REGSB, sys.MIPS64, 0},
{AMOVW, C_FREG, C_NONE, C_SAUTO, 28, 4, REGSP, sys.MIPS64, 0},
{AMOVF, C_FREG, C_NONE, C_SAUTO, 28, 4, REGSP, 0, 0},
{AMOVD, C_FREG, C_NONE, C_SAUTO, 28, 4, REGSP, 0, 0},
{AMOVW, C_FREG, C_NONE, C_SOREG, 28, 4, REGZERO, sys.MIPS64, 0},
{AMOVF, C_FREG, C_NONE, C_SOREG, 28, 4, REGZERO, 0, 0},
{AMOVD, C_FREG, C_NONE, C_SOREG, 28, 4, REGZERO, 0, 0},
{AMOVW, C_FREG, C_NONE, C_LEXT, 28, 12, REGSB, sys.MIPS64, 0},
{AMOVF, C_FREG, C_NONE, C_LEXT, 28, 12, REGSB, sys.MIPS64, 0},
{AMOVD, C_FREG, C_NONE, C_LEXT, 28, 12, REGSB, sys.MIPS64, 0},
{AMOVW, C_FREG, C_NONE, C_LAUTO, 28, 12, REGSP, sys.MIPS64, 0},
{AMOVF, C_FREG, C_NONE, C_LAUTO, 28, 12, REGSP, 0, 0},
{AMOVD, C_FREG, C_NONE, C_LAUTO, 28, 12, REGSP, 0, 0},
{AMOVW, C_FREG, C_NONE, C_LOREG, 28, 12, REGZERO, sys.MIPS64, 0},
{AMOVF, C_FREG, C_NONE, C_LOREG, 28, 12, REGZERO, 0, 0},
{AMOVD, C_FREG, C_NONE, C_LOREG, 28, 12, REGZERO, 0, 0},
{AMOVF, C_FREG, C_NONE, C_ADDR, 50, 8, 0, sys.MIPS, 0},
{AMOVF, C_FREG, C_NONE, C_ADDR, 50, 12, 0, sys.MIPS64, 0},
{AMOVD, C_FREG, C_NONE, C_ADDR, 50, 8, 0, sys.MIPS, 0},
{AMOVD, C_FREG, C_NONE, C_ADDR, 50, 12, 0, sys.MIPS64, 0},
{AMOVW, C_REG, C_NONE, C_FREG, 30, 4, 0, 0, 0},
{AMOVW, C_FREG, C_NONE, C_REG, 31, 4, 0, 0, 0},
{AMOVV, C_REG, C_NONE, C_FREG, 47, 4, 0, sys.MIPS64, 0},
{AMOVV, C_FREG, C_NONE, C_REG, 48, 4, 0, sys.MIPS64, 0},
{AMOVW, C_ADDCON, C_NONE, C_FREG, 34, 8, 0, sys.MIPS64, 0},
{AMOVW, C_ANDCON, C_NONE, C_FREG, 34, 8, 0, sys.MIPS64, 0},
{AMOVW, C_REG, C_NONE, C_MREG, 37, 4, 0, 0, 0},
{AMOVV, C_REG, C_NONE, C_MREG, 37, 4, 0, sys.MIPS64, 0},
{AMOVW, C_MREG, C_NONE, C_REG, 38, 4, 0, 0, 0},
{AMOVV, C_MREG, C_NONE, C_REG, 38, 4, 0, sys.MIPS64, 0},
{AWORD, C_LCON, C_NONE, C_NONE, 40, 4, 0, 0, 0},
{AMOVW, C_REG, C_NONE, C_FCREG, 41, 4, 0, 0, 0},
{AMOVV, C_REG, C_NONE, C_FCREG, 41, 4, 0, sys.MIPS64, 0},
{AMOVW, C_FCREG, C_NONE, C_REG, 42, 4, 0, 0, 0},
{AMOVV, C_FCREG, C_NONE, C_REG, 42, 4, 0, sys.MIPS64, 0},
{ATEQ, C_SCON, C_REG, C_REG, 15, 4, 0, 0, 0},
{ATEQ, C_SCON, C_NONE, C_REG, 15, 4, 0, 0, 0},
{ACMOVT, C_REG, C_NONE, C_REG, 17, 4, 0, 0, 0},
{AVMOVB, C_SCON, C_NONE, C_WREG, 56, 4, 0, sys.MIPS64, 0},
{AVMOVB, C_ADDCON, C_NONE, C_WREG, 56, 4, 0, sys.MIPS64, 0},
{AVMOVB, C_SOREG, C_NONE, C_WREG, 57, 4, 0, sys.MIPS64, 0},
{AVMOVB, C_WREG, C_NONE, C_SOREG, 58, 4, 0, sys.MIPS64, 0},
{ABREAK, C_REG, C_NONE, C_SEXT, 7, 4, REGSB, sys.MIPS64, 0}, /* really CACHE instruction */
{ABREAK, C_REG, C_NONE, C_SAUTO, 7, 4, REGSP, sys.MIPS64, 0},
{ABREAK, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, sys.MIPS64, 0},
{ABREAK, C_NONE, C_NONE, C_NONE, 5, 4, 0, 0, 0},
{obj.AUNDEF, C_NONE, C_NONE, C_NONE, 49, 4, 0, 0, 0},
{obj.APCDATA, C_LCON, C_NONE, C_LCON, 0, 0, 0, 0, 0},
{obj.AFUNCDATA, C_SCON, C_NONE, C_ADDR, 0, 0, 0, 0, 0},
{obj.ANOP, C_NONE, C_NONE, C_NONE, 0, 0, 0, 0, 0},
{obj.ANOP, C_LCON, C_NONE, C_NONE, 0, 0, 0, 0, 0}, // nop variants, see #40689
{obj.ANOP, C_REG, C_NONE, C_NONE, 0, 0, 0, 0, 0},
{obj.ANOP, C_FREG, C_NONE, C_NONE, 0, 0, 0, 0, 0},
{obj.ADUFFZERO, C_NONE, C_NONE, C_LBRA, 11, 4, 0, 0, 0}, // same as AJMP
{obj.ADUFFCOPY, C_NONE, C_NONE, C_LBRA, 11, 4, 0, 0, 0}, // same as AJMP
{obj.AXXX, C_NONE, C_NONE, C_NONE, 0, 4, 0, 0, 0},
}
var oprange [ALAST & obj.AMask][]Optab
var xcmp [C_NCLASS][C_NCLASS]bool
func span0(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
if ctxt.Retpoline {
ctxt.Diag("-spectre=ret not supported on mips")
ctxt.Retpoline = false // don't keep printing
}
p := cursym.Func.Text
if p == nil || p.Link == nil { // handle external functions and ELF section symbols
return
}
c := ctxt0{ctxt: ctxt, newprog: newprog, cursym: cursym, autosize: int32(p.To.Offset + ctxt.FixedFrameSize())}
if oprange[AOR&obj.AMask] == nil {
c.ctxt.Diag("mips ops not initialized, call mips.buildop first")
}
pc := int64(0)
p.Pc = pc
var m int
var o *Optab
for p = p.Link; p != nil; p = p.Link {
p.Pc = pc
o = c.oplook(p)
m = int(o.size)
if m == 0 {
if p.As != obj.ANOP && p.As != obj.AFUNCDATA && p.As != obj.APCDATA {
c.ctxt.Diag("zero-width instruction\n%v", p)
}
continue
}
pc += int64(m)
}
c.cursym.Size = pc
/*
* if any procedure is large enough to
* generate a large SBRA branch, then
* generate extra passes putting branches
* around jmps to fix. this is rare.
*/
bflag := 1
var otxt int64
var q *obj.Prog
for bflag != 0 {
bflag = 0
pc = 0
for p = c.cursym.Func.Text.Link; p != nil; p = p.Link {
p.Pc = pc
o = c.oplook(p)
// very large conditional branches
if o.type_ == 6 && p.To.Target() != nil {
otxt = p.To.Target().Pc - pc
if otxt < -(1<<17)+10 || otxt >= (1<<17)-10 {
q = c.newprog()
q.Link = p.Link
p.Link = q
q.As = AJMP
q.Pos = p.Pos
q.To.Type = obj.TYPE_BRANCH
q.To.SetTarget(p.To.Target())
p.To.SetTarget(q)
q = c.newprog()
q.Link = p.Link
p.Link = q
q.As = AJMP
q.Pos = p.Pos
q.To.Type = obj.TYPE_BRANCH
q.To.SetTarget(q.Link.Link)
c.addnop(p.Link)
c.addnop(p)
bflag = 1
}
}
m = int(o.size)
if m == 0 {
if p.As != obj.ANOP && p.As != obj.AFUNCDATA && p.As != obj.APCDATA {
c.ctxt.Diag("zero-width instruction\n%v", p)
}
continue
}
pc += int64(m)
}
c.cursym.Size = pc
}
if c.ctxt.Arch.Family == sys.MIPS64 {
pc += -pc & (mips64FuncAlign - 1)
}
c.cursym.Size = pc
/*
* lay out the code, emitting code and data relocations.
*/
c.cursym.Grow(c.cursym.Size)
bp := c.cursym.P
var i int32
var out [4]uint32
for p := c.cursym.Func.Text.Link; p != nil; p = p.Link {
c.pc = p.Pc
o = c.oplook(p)
if int(o.size) > 4*len(out) {
log.Fatalf("out array in span0 is too small, need at least %d for %v", o.size/4, p)
}
c.asmout(p, o, out[:])
for i = 0; i < int32(o.size/4); i++ {
c.ctxt.Arch.ByteOrder.PutUint32(bp, out[i])
bp = bp[4:]
}
}
// Mark nonpreemptible instruction sequences.
// We use REGTMP as a scratch register during call injection,
// so instruction sequences that use REGTMP are unsafe to
// preempt asynchronously.
obj.MarkUnsafePoints(c.ctxt, c.cursym.Func.Text, c.newprog, c.isUnsafePoint, c.isRestartable)
}
// isUnsafePoint returns whether p is an unsafe point.
func (c *ctxt0) isUnsafePoint(p *obj.Prog) bool {
// If p explicitly uses REGTMP, it's unsafe to preempt, because the
// preemption sequence clobbers REGTMP.
return p.From.Reg == REGTMP || p.To.Reg == REGTMP || p.Reg == REGTMP
}
// isRestartable returns whether p is a multi-instruction sequence that,
// if preempted, can be restarted.
func (c *ctxt0) isRestartable(p *obj.Prog) bool {
if c.isUnsafePoint(p) {
return false
}
// If p is a multi-instruction sequence with uses REGTMP inserted by
// the assembler in order to materialize a large constant/offset, we
// can restart p (at the start of the instruction sequence), recompute
// the content of REGTMP, upon async preemption. Currently, all cases
// of assembler-inserted REGTMP fall into this category.
// If p doesn't use REGTMP, it can be simply preempted, so we don't
// mark it.
o := c.oplook(p)
return o.size > 4 && o.flag&NOTUSETMP == 0
}
func isint32(v int64) bool {
return int64(int32(v)) == v
}
func isuint32(v uint64) bool {
return uint64(uint32(v)) == v
}
func (c *ctxt0) aclass(a *obj.Addr) int {
switch a.Type {
case obj.TYPE_NONE:
return C_NONE
case obj.TYPE_REG:
if REG_R0 <= a.Reg && a.Reg <= REG_R31 {
return C_REG
}
if REG_F0 <= a.Reg && a.Reg <= REG_F31 {
return C_FREG
}
if REG_M0 <= a.Reg && a.Reg <= REG_M31 {
return C_MREG
}
if REG_FCR0 <= a.Reg && a.Reg <= REG_FCR31 {
return C_FCREG
}
if REG_W0 <= a.Reg && a.Reg <= REG_W31 {
return C_WREG
}
if a.Reg == REG_LO {
return C_LO
}
if a.Reg == REG_HI {
return C_HI
}
return C_GOK
case obj.TYPE_MEM:
switch a.Name {
case obj.NAME_EXTERN,
obj.NAME_STATIC:
if a.Sym == nil {
break
}
c.instoffset = a.Offset
if a.Sym != nil { // use relocation
if a.Sym.Type == objabi.STLSBSS {
return C_TLS
}
return C_ADDR
}
return C_LEXT
case obj.NAME_AUTO:
if a.Reg == REGSP {
// unset base register for better printing, since
// a.Offset is still relative to pseudo-SP.
a.Reg = obj.REG_NONE
}
c.instoffset = int64(c.autosize) + a.Offset
if c.instoffset >= -BIG && c.instoffset < BIG {
return C_SAUTO
}
return C_LAUTO
case obj.NAME_PARAM:
if a.Reg == REGSP {
// unset base register for better printing, since
// a.Offset is still relative to pseudo-FP.
a.Reg = obj.REG_NONE
}
c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
if c.instoffset >= -BIG && c.instoffset < BIG {
return C_SAUTO
}
return C_LAUTO
case obj.NAME_NONE:
c.instoffset = a.Offset
if c.instoffset == 0 {
return C_ZOREG
}
if c.instoffset >= -BIG && c.instoffset < BIG {
return C_SOREG
}
return C_LOREG
}
return C_GOK
case obj.TYPE_TEXTSIZE:
return C_TEXTSIZE
case obj.TYPE_CONST,
obj.TYPE_ADDR:
switch a.Name {
case obj.NAME_NONE:
c.instoffset = a.Offset
if a.Reg != 0 {
if -BIG <= c.instoffset && c.instoffset <= BIG {
return C_SACON
}
if isint32(c.instoffset) {
return C_LACON
}
return C_DACON
}
case obj.NAME_EXTERN,
obj.NAME_STATIC:
s := a.Sym
if s == nil {
return C_GOK
}
c.instoffset = a.Offset
if s.Type == objabi.STLSBSS {
return C_STCON // address of TLS variable
}
return C_LECON
case obj.NAME_AUTO:
if a.Reg == REGSP {
// unset base register for better printing, since
// a.Offset is still relative to pseudo-SP.
a.Reg = obj.REG_NONE
}
c.instoffset = int64(c.autosize) + a.Offset
if c.instoffset >= -BIG && c.instoffset < BIG {
return C_SACON
}
return C_LACON
case obj.NAME_PARAM:
if a.Reg == REGSP {
// unset base register for better printing, since
// a.Offset is still relative to pseudo-FP.
a.Reg = obj.REG_NONE
}
c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
if c.instoffset >= -BIG && c.instoffset < BIG {
return C_SACON
}
return C_LACON
default:
return C_GOK
}
if c.instoffset >= 0 {
if c.instoffset == 0 {
return C_ZCON
}
if c.instoffset <= 0x7fff {
return C_SCON
}
if c.instoffset <= 0xffff {
return C_ANDCON
}
if c.instoffset&0xffff == 0 && isuint32(uint64(c.instoffset)) { /* && (instoffset & (1<<31)) == 0) */
return C_UCON
}
if isint32(c.instoffset) || isuint32(uint64(c.instoffset)) {
return C_LCON
}
return C_LCON // C_DCON
}
if c.instoffset >= -0x8000 {
return C_ADDCON
}
if c.instoffset&0xffff == 0 && isint32(c.instoffset) {
return C_UCON
}
if isint32(c.instoffset) {
return C_LCON
}
return C_LCON // C_DCON
case obj.TYPE_BRANCH:
return C_SBRA
}
return C_GOK
}
func prasm(p *obj.Prog) {
fmt.Printf("%v\n", p)
}
func (c *ctxt0) oplook(p *obj.Prog) *Optab {
if oprange[AOR&obj.AMask] == nil {
c.ctxt.Diag("mips ops not initialized, call mips.buildop first")
}
a1 := int(p.Optab)
if a1 != 0 {
return &optab[a1-1]
}
a1 = int(p.From.Class)
if a1 == 0 {
a1 = c.aclass(&p.From) + 1
p.From.Class = int8(a1)
}
a1--
a3 := int(p.To.Class)
if a3 == 0 {
a3 = c.aclass(&p.To) + 1
p.To.Class = int8(a3)
}
a3--
a2 := C_NONE
if p.Reg != 0 {
a2 = C_REG
}
ops := oprange[p.As&obj.AMask]
c1 := &xcmp[a1]
c3 := &xcmp[a3]
for i := range ops {
op := &ops[i]
if int(op.a2) == a2 && c1[op.a1] && c3[op.a3] && (op.family == 0 || c.ctxt.Arch.Family == op.family) {
p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
return op
}
}
c.ctxt.Diag("illegal combination %v %v %v %v", p.As, DRconv(a1), DRconv(a2), DRconv(a3))
prasm(p)
// Turn illegal instruction into an UNDEF, avoid crashing in asmout.
return &Optab{obj.AUNDEF, C_NONE, C_NONE, C_NONE, 49, 4, 0, 0, 0}
}
func cmp(a int, b int) bool {
if a == b {
return true
}
switch a {
case C_LCON:
if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON {
return true
}
case C_ADD0CON:
if b == C_ADDCON {
return true
}
fallthrough
case C_ADDCON:
if b == C_ZCON || b == C_SCON {
return true
}
case C_AND0CON:
if b == C_ANDCON {
return true
}
fallthrough
case C_ANDCON:
if b == C_ZCON || b == C_SCON {
return true
}
case C_UCON:
if b == C_ZCON {
return true
}
case C_SCON:
if b == C_ZCON {
return true
}
case C_LACON:
if b == C_SACON {
return true
}
case C_LBRA:
if b == C_SBRA {
return true
}
case C_LEXT:
if b == C_SEXT {
return true
}
case C_LAUTO:
if b == C_SAUTO {
return true
}
case C_REG:
if b == C_ZCON {
return r0iszero != 0 /*TypeKind(100016)*/
}
case C_LOREG:
if b == C_ZOREG || b == C_SOREG {
return true
}
case C_SOREG:
if b == C_ZOREG {
return true
}
}
return false
}
type ocmp []Optab
func (x ocmp) Len() int {
return len(x)
}
func (x ocmp) Swap(i, j int) {
x[i], x[j] = x[j], x[i]
}
func (x ocmp) Less(i, j int) bool {
p1 := &x[i]
p2 := &x[j]
n := int(p1.as) - int(p2.as)
if n != 0 {
return n < 0
}
n = int(p1.a1) - int(p2.a1)
if n != 0 {
return n < 0
}
n = int(p1.a2) - int(p2.a2)
if n != 0 {
return n < 0
}
n = int(p1.a3) - int(p2.a3)
if n != 0 {
return n < 0
}
return false
}
func opset(a, b0 obj.As) {
oprange[a&obj.AMask] = oprange[b0]
}
func buildop(ctxt *obj.Link) {
if oprange[AOR&obj.AMask] != nil {
// Already initialized; stop now.
// This happens in the cmd/asm tests,
// each of which re-initializes the arch.
return
}
var n int
for i := 0; i < C_NCLASS; i++ {
for n = 0; n < C_NCLASS; n++ {
if cmp(n, i) {
xcmp[i][n] = true
}
}
}
for n = 0; optab[n].as != obj.AXXX; n++ {
}
sort.Sort(ocmp(optab[:n]))
for i := 0; i < n; i++ {
r := optab[i].as
r0 := r & obj.AMask
start := i
for optab[i].as == r {
i++
}
oprange[r0] = optab[start:i]
i--
switch r {
default:
ctxt.Diag("unknown op in build: %v", r)
ctxt.DiagFlush()
log.Fatalf("bad code")
case AABSF:
opset(AMOVFD, r0)
opset(AMOVDF, r0)
opset(AMOVWF, r0)
opset(AMOVFW, r0)
opset(AMOVWD, r0)
opset(AMOVDW, r0)
opset(ANEGF, r0)
opset(ANEGD, r0)
opset(AABSD, r0)
opset(ATRUNCDW, r0)
opset(ATRUNCFW, r0)
opset(ASQRTF, r0)
opset(ASQRTD, r0)
case AMOVVF:
opset(AMOVVD, r0)
opset(AMOVFV, r0)
opset(AMOVDV, r0)
opset(ATRUNCDV, r0)
opset(ATRUNCFV, r0)
case AADD:
opset(ASGT, r0)
opset(ASGTU, r0)
opset(AADDU, r0)
case AADDV:
opset(AADDVU, r0)
case AADDF:
opset(ADIVF, r0)
opset(ADIVD, r0)
opset(AMULF, r0)
opset(AMULD, r0)
opset(ASUBF, r0)
opset(ASUBD, r0)
opset(AADDD, r0)
case AAND:
opset(AOR, r0)
opset(AXOR, r0)
case ABEQ:
opset(ABNE, r0)
case ABLEZ:
opset(ABGEZ, r0)
opset(ABGEZAL, r0)
opset(ABLTZ, r0)
opset(ABLTZAL, r0)
opset(ABGTZ, r0)
case AMOVB:
opset(AMOVH, r0)
case AMOVBU:
opset(AMOVHU, r0)
case AMUL:
opset(AREM, r0)
opset(AREMU, r0)
opset(ADIVU, r0)
opset(AMULU, r0)
opset(ADIV, r0)
opset(AMADD, r0)
opset(AMSUB, r0)
case AMULV:
opset(ADIVV, r0)
opset(ADIVVU, r0)
opset(AMULVU, r0)
opset(AREMV, r0)
opset(AREMVU, r0)
case ASLL:
opset(ASRL, r0)
opset(ASRA, r0)
case ASLLV:
opset(ASRAV, r0)
opset(ASRLV, r0)
case ASUB:
opset(ASUBU, r0)
opset(ANOR, r0)
case ASUBV:
opset(ASUBVU, r0)
case ASYSCALL:
opset(ASYNC, r0)
opset(ANOOP, r0)
opset(ATLBP, r0)
opset(ATLBR, r0)
opset(ATLBWI, r0)
opset(ATLBWR, r0)
case ACMPEQF:
opset(ACMPGTF, r0)
opset(ACMPGTD, r0)
opset(ACMPGEF, r0)
opset(ACMPGED, r0)
opset(ACMPEQD, r0)
case ABFPT:
opset(ABFPF, r0)
case AMOVWL:
opset(AMOVWR, r0)
case AMOVVL:
opset(AMOVVR, r0)
case AVMOVB:
opset(AVMOVH, r0)
opset(AVMOVW, r0)
opset(AVMOVD, r0)
case AMOVW,
AMOVD,
AMOVF,
AMOVV,
ABREAK,
ARFE,
AJAL,
AJMP,
AMOVWU,
ALL,
ALLV,
ASC,
ASCV,
ANEGW,
ANEGV,
AWORD,
obj.ANOP,
obj.ATEXT,
obj.AUNDEF,
obj.AFUNCDATA,
obj.APCDATA,
obj.ADUFFZERO,
obj.ADUFFCOPY:
break
case ACMOVN:
opset(ACMOVZ, r0)
case ACMOVT:
opset(ACMOVF, r0)
case ACLO:
opset(ACLZ, r0)
case ATEQ:
opset(ATNE, r0)
}
}
}
func OP(x uint32, y uint32) uint32 {
return x<<3 | y<<0
}
func SP(x uint32, y uint32) uint32 {
return x<<29 | y<<26
}
func BCOND(x uint32, y uint32) uint32 {
return x<<19 | y<<16
}
func MMU(x uint32, y uint32) uint32 {
return SP(2, 0) | 16<<21 | x<<3 | y<<0
}
func FPF(x uint32, y uint32) uint32 {
return SP(2, 1) | 16<<21 | x<<3 | y<<0
}
func FPD(x uint32, y uint32) uint32 {
return SP(2, 1) | 17<<21 | x<<3 | y<<0
}
func FPW(x uint32, y uint32) uint32 {
return SP(2, 1) | 20<<21 | x<<3 | y<<0
}
func FPV(x uint32, y uint32) uint32 {
return SP(2, 1) | 21<<21 | x<<3 | y<<0
}
func OP_RRR(op uint32, r1 uint32, r2 uint32, r3 uint32) uint32 {
return op | (r1&31)<<16 | (r2&31)<<21 | (r3&31)<<11
}
func OP_IRR(op uint32, i uint32, r2 uint32, r3 uint32) uint32 {
return op | i&0xFFFF | (r2&31)<<21 | (r3&31)<<16
}
func OP_SRR(op uint32, s uint32, r2 uint32, r3 uint32) uint32 {
return op | (s&31)<<6 | (r2&31)<<16 | (r3&31)<<11
}
func OP_FRRR(op uint32, r1 uint32, r2 uint32, r3 uint32) uint32 {
return op | (r1&31)<<16 | (r2&31)<<11 | (r3&31)<<6
}
func OP_JMP(op uint32, i uint32) uint32 {
return op | i&0x3FFFFFF
}
func OP_VI10(op uint32, df uint32, s10 int32, wd uint32, minor uint32) uint32 {
return 0x1e<<26 | (op&7)<<23 | (df&3)<<21 | uint32(s10&0x3FF)<<11 | (wd&31)<<6 | minor&0x3F
}
func OP_VMI10(s10 int32, rs uint32, wd uint32, minor uint32, df uint32) uint32 {
return 0x1e<<26 | uint32(s10&0x3FF)<<16 | (rs&31)<<11 | (wd&31)<<6 | (minor&15)<<2 | df&3
}
func (c *ctxt0) asmout(p *obj.Prog, o *Optab, out []uint32) {
o1 := uint32(0)
o2 := uint32(0)
o3 := uint32(0)
o4 := uint32(0)
add := AADDU
if c.ctxt.Arch.Family == sys.MIPS64 {
add = AADDVU
}
switch o.type_ {
default:
c.ctxt.Diag("unknown type %d %v", o.type_)
prasm(p)
case 0: /* pseudo ops */
break
case 1: /* mov r1,r2 ==> OR r1,r0,r2 */
a := AOR
if p.As == AMOVW && c.ctxt.Arch.Family == sys.MIPS64 {
// on MIPS64, most of the 32-bit instructions have unpredictable behavior,
// but SLL is special that the result is always sign-extended to 64-bit.
a = ASLL
}
o1 = OP_RRR(c.oprrr(a), uint32(p.From.Reg), uint32(REGZERO), uint32(p.To.Reg))
case 2: /* add/sub r1,[r2],r3 */
r := int(p.Reg)
if p.As == ANEGW || p.As == ANEGV {
r = REGZERO
}
if r == 0 {
r = int(p.To.Reg)
}
o1 = OP_RRR(c.oprrr(p.As), uint32(p.From.Reg), uint32(r), uint32(p.To.Reg))
case 3: /* mov $soreg, r ==> or/add $i,o,r */
v := c.regoff(&p.From)
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
a := add
if o.a1 == C_ANDCON {
a = AOR
}
o1 = OP_IRR(c.opirr(a), uint32(v), uint32(r), uint32(p.To.Reg))
case 4: /* add $scon,[r1],r2 */
v := c.regoff(&p.From)
r := int(p.Reg)
if r == 0 {
r = int(p.To.Reg)
}
o1 = OP_IRR(c.opirr(p.As), uint32(v), uint32(r), uint32(p.To.Reg))
case 5: /* syscall */
o1 = c.oprrr(p.As)
case 6: /* beq r1,[r2],sbra */
v := int32(0)
if p.To.Target() == nil {
v = int32(-4) >> 2
} else {
v = int32(p.To.Target().Pc-p.Pc-4) >> 2
}
if (v<<16)>>16 != v {
c.ctxt.Diag("short branch too far\n%v", p)
}
o1 = OP_IRR(c.opirr(p.As), uint32(v), uint32(p.From.Reg), uint32(p.Reg))
// for ABFPT and ABFPF only: always fill delay slot with 0
// see comments in func preprocess for details.
o2 = 0
case 7: /* mov r, soreg ==> sw o(r) */
r := int(p.To.Reg)
if r == 0 {
r = int(o.param)
}
v := c.regoff(&p.To)
o1 = OP_IRR(c.opirr(p.As), uint32(v), uint32(r), uint32(p.From.Reg))
case 8: /* mov soreg, r ==> lw o(r) */
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
v := c.regoff(&p.From)
o1 = OP_IRR(c.opirr(-p.As), uint32(v), uint32(r), uint32(p.To.Reg))
case 9: /* sll r1,[r2],r3 */
r := int(p.Reg)
if r == 0 {
r = int(p.To.Reg)
}
o1 = OP_RRR(c.oprrr(p.As), uint32(r), uint32(p.From.Reg), uint32(p.To.Reg))
case 10: /* add $con,[r1],r2 ==> mov $con, t; add t,[r1],r2 */
v := c.regoff(&p.From)
a := AOR
if v < 0 {
a = AADDU
}
o1 = OP_IRR(c.opirr(a), uint32(v), uint32(0), uint32(REGTMP))
r := int(p.Reg)
if r == 0 {
r = int(p.To.Reg)
}
o2 = OP_RRR(c.oprrr(p.As), uint32(REGTMP), uint32(r), uint32(p.To.Reg))
case 11: /* jmp lbra */
v := int32(0)
if c.aclass(&p.To) == C_SBRA && p.To.Sym == nil && p.As == AJMP {
// use PC-relative branch for short branches
// BEQ R0, R0, sbra
if p.To.Target() == nil {
v = int32(-4) >> 2
} else {
v = int32(p.To.Target().Pc-p.Pc-4) >> 2
}
if (v<<16)>>16 == v {
o1 = OP_IRR(c.opirr(ABEQ), uint32(v), uint32(REGZERO), uint32(REGZERO))
break
}
}
if p.To.Target() == nil {
v = int32(p.Pc) >> 2
} else {
v = int32(p.To.Target().Pc) >> 2
}
o1 = OP_JMP(c.opirr(p.As), uint32(v))
if p.To.Sym == nil {
p.To.Sym = c.cursym.Func.Text.From.Sym
p.To.Offset = p.To.Target().Pc
}
rel := obj.Addrel(c.cursym)
rel.Off = int32(c.pc)
rel.Siz = 4
rel.Sym = p.To.Sym
rel.Add = p.To.Offset
if p.As == AJAL {
rel.Type = objabi.R_CALLMIPS
} else {
rel.Type = objabi.R_JMPMIPS
}
case 12: /* movbs r,r */
// NOTE: this case does not use REGTMP. If it ever does,
// remove the NOTUSETMP flag in optab.
v := 16
if p.As == AMOVB {
v = 24
}
o1 = OP_SRR(c.opirr(ASLL), uint32(v), uint32(p.From.Reg), uint32(p.To.Reg))
o2 = OP_SRR(c.opirr(ASRA), uint32(v), uint32(p.To.Reg), uint32(p.To.Reg))
case 13: /* movbu r,r */
if p.As == AMOVBU {
o1 = OP_IRR(c.opirr(AAND), uint32(0xff), uint32(p.From.Reg), uint32(p.To.Reg))
} else {
o1 = OP_IRR(c.opirr(AAND), uint32(0xffff), uint32(p.From.Reg), uint32(p.To.Reg))
}
case 14: /* movwu r,r */
// NOTE: this case does not use REGTMP. If it ever does,
// remove the NOTUSETMP flag in optab.
o1 = OP_SRR(c.opirr(-ASLLV), uint32(0), uint32(p.From.Reg), uint32(p.To.Reg))
o2 = OP_SRR(c.opirr(-ASRLV), uint32(0), uint32(p.To.Reg), uint32(p.To.Reg))
case 15: /* teq $c r,r */
v := c.regoff(&p.From)
r := int(p.Reg)
if r == 0 {
r = REGZERO
}
/* only use 10 bits of trap code */
o1 = OP_IRR(c.opirr(p.As), (uint32(v)&0x3FF)<<6, uint32(r), uint32(p.To.Reg))
case 16: /* sll $c,[r1],r2 */
v := c.regoff(&p.From)
r := int(p.Reg)
if r == 0 {
r = int(p.To.Reg)
}
/* OP_SRR will use only the low 5 bits of the shift value */
if v >= 32 && vshift(p.As) {
o1 = OP_SRR(c.opirr(-p.As), uint32(v-32), uint32(r), uint32(p.To.Reg))
} else {
o1 = OP_SRR(c.opirr(p.As), uint32(v), uint32(r), uint32(p.To.Reg))
}
case 17:
o1 = OP_RRR(c.oprrr(p.As), uint32(REGZERO), uint32(p.From.Reg), uint32(p.To.Reg))
case 18: /* jmp [r1],0(r2) */
r := int(p.Reg)
if r == 0 {
r = int(o.param)
}
o1 = OP_RRR(c.oprrr(p.As), uint32(0), uint32(p.To.Reg), uint32(r))
if p.As == obj.ACALL {
rel := obj.Addrel(c.cursym)
rel.Off = int32(c.pc)
rel.Siz = 0
rel.Type = objabi.R_CALLIND
}
case 19: /* mov $lcon,r ==> lu+or */
// NOTE: this case does not use REGTMP. If it ever does,
// remove the NOTUSETMP flag in optab.
v := c.regoff(&p.From)
o1 = OP_IRR(c.opirr(ALUI), uint32(v>>16), uint32(REGZERO), uint32(p.To.Reg))
o2 = OP_IRR(c.opirr(AOR), uint32(v), uint32(p.To.Reg), uint32(p.To.Reg))
case 20: /* mov lo/hi,r */
a := OP(2, 0) /* mfhi */
if p.From.Reg == REG_LO {
a = OP(2, 2) /* mflo */
}
o1 = OP_RRR(a, uint32(REGZERO), uint32(REGZERO), uint32(p.To.Reg))
case 21: /* mov r,lo/hi */
a := OP(2, 1) /* mthi */
if p.To.Reg == REG_LO {
a = OP(2, 3) /* mtlo */
}
o1 = OP_RRR(a, uint32(REGZERO), uint32(p.From.Reg), uint32(REGZERO))
case 22: /* mul r1,r2 [r3]*/
if p.To.Reg != 0 {
r := int(p.Reg)
if r == 0 {
r = int(p.To.Reg)
}
a := SP(3, 4) | 2 /* mul */
o1 = OP_RRR(a, uint32(p.From.Reg), uint32(r), uint32(p.To.Reg))
} else {
o1 = OP_RRR(c.oprrr(p.As), uint32(p.From.Reg), uint32(p.Reg), uint32(REGZERO))
}
case 23: /* add $lcon,r1,r2 ==> lu+or+add */
v := c.regoff(&p.From)
o1 = OP_IRR(c.opirr(ALUI), uint32(v>>16), uint32(REGZERO), uint32(REGTMP))
o2 = OP_IRR(c.opirr(AOR), uint32(v), uint32(REGTMP), uint32(REGTMP))
r := int(p.Reg)
if r == 0 {
r = int(p.To.Reg)
}
o3 = OP_RRR(c.oprrr(p.As), uint32(REGTMP), uint32(r), uint32(p.To.Reg))
case 24: /* mov $ucon,r ==> lu r */
v := c.regoff(&p.From)
o1 = OP_IRR(c.opirr(ALUI), uint32(v>>16), uint32(REGZERO), uint32(p.To.Reg))
case 25: /* add/and $ucon,[r1],r2 ==> lu $con,t; add t,[r1],r2 */
v := c.regoff(&p.From)
o1 = OP_IRR(c.opirr(ALUI), uint32(v>>16), uint32(REGZERO), uint32(REGTMP))
r := int(p.Reg)
if r == 0 {
r = int(p.To.Reg)
}
o2 = OP_RRR(c.oprrr(p.As), uint32(REGTMP), uint32(r), uint32(p.To.Reg))
case 26: /* mov $lsext/auto/oreg,r ==> lu+or+add */
v := c.regoff(&p.From)
o1 = OP_IRR(c.opirr(ALUI), uint32(v>>16), uint32(REGZERO), uint32(REGTMP))
o2 = OP_IRR(c.opirr(AOR), uint32(v), uint32(REGTMP), uint32(REGTMP))
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o3 = OP_RRR(c.oprrr(add), uint32(REGTMP), uint32(r), uint32(p.To.Reg))
case 27: /* mov [sl]ext/auto/oreg,fr ==> lwc1 o(r) */
v := c.regoff(&p.From)
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
a := -AMOVF
if p.As == AMOVD {
a = -AMOVD
}
switch o.size {
case 12:
o1 = OP_IRR(c.opirr(ALUI), uint32((v+1<<15)>>16), uint32(REGZERO), uint32(REGTMP))
o2 = OP_RRR(c.oprrr(add), uint32(r), uint32(REGTMP), uint32(REGTMP))
o3 = OP_IRR(c.opirr(a), uint32(v), uint32(REGTMP), uint32(p.To.Reg))
case 4:
o1 = OP_IRR(c.opirr(a), uint32(v), uint32(r), uint32(p.To.Reg))
}
case 28: /* mov fr,[sl]ext/auto/oreg ==> swc1 o(r) */
v := c.regoff(&p.To)
r := int(p.To.Reg)
if r == 0 {
r = int(o.param)
}
a := AMOVF
if p.As == AMOVD {
a = AMOVD
}
switch o.size {
case 12:
o1 = OP_IRR(c.opirr(ALUI), uint32((v+1<<15)>>16), uint32(REGZERO), uint32(REGTMP))
o2 = OP_RRR(c.oprrr(add), uint32(r), uint32(REGTMP), uint32(REGTMP))
o3 = OP_IRR(c.opirr(a), uint32(v), uint32(REGTMP), uint32(p.From.Reg))
case 4:
o1 = OP_IRR(c.opirr(a), uint32(v), uint32(r), uint32(p.From.Reg))
}
case 30: /* movw r,fr */
a := SP(2, 1) | (4 << 21) /* mtc1 */
o1 = OP_RRR(a, uint32(p.From.Reg), uint32(0), uint32(p.To.Reg))
case 31: /* movw fr,r */
a := SP(2, 1) | (0 << 21) /* mtc1 */
o1 = OP_RRR(a, uint32(p.To.Reg), uint32(0), uint32(p.From.Reg))
case 32: /* fadd fr1,[fr2],fr3 */
r := int(p.Reg)
if r == 0 {
r = int(p.To.Reg)
}
o1 = OP_FRRR(c.oprrr(p.As), uint32(p.From.Reg), uint32(r), uint32(p.To.Reg))
case 33: /* fabs fr1, fr3 */
o1 = OP_FRRR(c.oprrr(p.As), uint32(0), uint32(p.From.Reg), uint32(p.To.Reg))
case 34: /* mov $con,fr ==> or/add $i,t; mov t,fr */
v := c.regoff(&p.From)
a := AADDU
if o.a1 == C_ANDCON {
a = AOR
}
o1 = OP_IRR(c.opirr(a), uint32(v), uint32(0), uint32(REGTMP))
o2 = OP_RRR(SP(2, 1)|(4<<21), uint32(REGTMP), uint32(0), uint32(p.To.Reg)) /* mtc1 */
case 35: /* mov r,lext/auto/oreg ==> sw o(REGTMP) */
v := c.regoff(&p.To)
r := int(p.To.Reg)
if r == 0 {
r = int(o.param)
}
o1 = OP_IRR(c.opirr(ALUI), uint32((v+1<<15)>>16), uint32(REGZERO), uint32(REGTMP))
o2 = OP_RRR(c.oprrr(add), uint32(r), uint32(REGTMP), uint32(REGTMP))
o3 = OP_IRR(c.opirr(p.As), uint32(v), uint32(REGTMP), uint32(p.From.Reg))
case 36: /* mov lext/auto/oreg,r ==> lw o(REGTMP) */
v := c.regoff(&p.From)
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o1 = OP_IRR(c.opirr(ALUI), uint32((v+1<<15)>>16), uint32(REGZERO), uint32(REGTMP))
o2 = OP_RRR(c.oprrr(add), uint32(r), uint32(REGTMP), uint32(REGTMP))
o3 = OP_IRR(c.opirr(-p.As), uint32(v), uint32(REGTMP), uint32(p.To.Reg))
case 37: /* movw r,mr */
a := SP(2, 0) | (4 << 21) /* mtc0 */
if p.As == AMOVV {
a = SP(2, 0) | (5 << 21) /* dmtc0 */
}
o1 = OP_RRR(a, uint32(p.From.Reg), uint32(0), uint32(p.To.Reg))
case 38: /* movw mr,r */
a := SP(2, 0) | (0 << 21) /* mfc0 */
if p.As == AMOVV {
a = SP(2, 0) | (1 << 21) /* dmfc0 */
}
o1 = OP_RRR(a, uint32(p.To.Reg), uint32(0), uint32(p.From.Reg))
case 40: /* word */
o1 = uint32(c.regoff(&p.From))
case 41: /* movw f,fcr */
o1 = OP_RRR(SP(2, 1)|(6<<21), uint32(p.From.Reg), uint32(0), uint32(p.To.Reg)) /* mtcc1 */
case 42: /* movw fcr,r */
o1 = OP_RRR(SP(2, 1)|(2<<21), uint32(p.To.Reg), uint32(0), uint32(p.From.Reg)) /* mfcc1 */
case 47: /* movv r,fr */
a := SP(2, 1) | (5 << 21) /* dmtc1 */
o1 = OP_RRR(a, uint32(p.From.Reg), uint32(0), uint32(p.To.Reg))
case 48: /* movv fr,r */
a := SP(2, 1) | (1 << 21) /* dmtc1 */
o1 = OP_RRR(a, uint32(p.To.Reg), uint32(0), uint32(p.From.Reg))
case 49: /* undef */
o1 = 52 /* trap -- teq r0, r0 */
/* relocation operations */
case 50: /* mov r,addr ==> lu + add REGSB, REGTMP + sw o(REGTMP) */
o1 = OP_IRR(c.opirr(ALUI), uint32(0), uint32(REGZERO), uint32(REGTMP))
rel := obj.Addrel(c.cursym)
rel.Off = int32(c.pc)
rel.Siz = 4
rel.Sym = p.To.Sym
rel.Add = p.To.Offset
rel.Type = objabi.R_ADDRMIPSU
o2 = OP_IRR(c.opirr(p.As), uint32(0), uint32(REGTMP), uint32(p.From.Reg))
rel2 := obj.Addrel(c.cursym)
rel2.Off = int32(c.pc + 4)
rel2.Siz = 4
rel2.Sym = p.To.Sym
rel2.Add = p.To.Offset
rel2.Type = objabi.R_ADDRMIPS
if o.size == 12 {
o3 = o2
o2 = OP_RRR(c.oprrr(AADDVU), uint32(REGSB), uint32(REGTMP), uint32(REGTMP))
rel2.Off += 4
}
case 51: /* mov addr,r ==> lu + add REGSB, REGTMP + lw o(REGTMP) */
o1 = OP_IRR(c.opirr(ALUI), uint32(0), uint32(REGZERO), uint32(REGTMP))
rel := obj.Addrel(c.cursym)
rel.Off = int32(c.pc)
rel.Siz = 4
rel.Sym = p.From.Sym
rel.Add = p.From.Offset
rel.Type = objabi.R_ADDRMIPSU
o2 = OP_IRR(c.opirr(-p.As), uint32(0), uint32(REGTMP), uint32(p.To.Reg))
rel2 := obj.Addrel(c.cursym)
rel2.Off = int32(c.pc + 4)
rel2.Siz = 4
rel2.Sym = p.From.Sym
rel2.Add = p.From.Offset
rel2.Type = objabi.R_ADDRMIPS
if o.size == 12 {
o3 = o2
o2 = OP_RRR(c.oprrr(AADDVU), uint32(REGSB), uint32(REGTMP), uint32(REGTMP))
rel2.Off += 4
}
case 52: /* mov $lext, r ==> lu + add REGSB, r + add */
// NOTE: this case does not use REGTMP. If it ever does,
// remove the NOTUSETMP flag in optab.
o1 = OP_IRR(c.opirr(ALUI), uint32(0), uint32(REGZERO), uint32(p.To.Reg))
rel := obj.Addrel(c.cursym)
rel.Off = int32(c.pc)
rel.Siz = 4
rel.Sym = p.From.Sym
rel.Add = p.From.Offset
rel.Type = objabi.R_ADDRMIPSU
o2 = OP_IRR(c.opirr(add), uint32(0), uint32(p.To.Reg), uint32(p.To.Reg))
rel2 := obj.Addrel(c.cursym)
rel2.Off = int32(c.pc + 4)
rel2.Siz = 4
rel2.Sym = p.From.Sym
rel2.Add = p.From.Offset
rel2.Type = objabi.R_ADDRMIPS
if o.size == 12 {
o3 = o2
o2 = OP_RRR(c.oprrr(AADDVU), uint32(REGSB), uint32(p.To.Reg), uint32(p.To.Reg))
rel2.Off += 4
}
case 53: /* mov r, tlsvar ==> rdhwr + sw o(r3) */
// clobbers R3 !
// load thread pointer with RDHWR, R3 is used for fast kernel emulation on Linux
// NOTE: this case does not use REGTMP. If it ever does,
// remove the NOTUSETMP flag in optab.
o1 = (037<<26 + 073) | (29 << 11) | (3 << 16) // rdhwr $29, r3
o2 = OP_IRR(c.opirr(p.As), uint32(0), uint32(REG_R3), uint32(p.From.Reg))
rel := obj.Addrel(c.cursym)
rel.Off = int32(c.pc + 4)
rel.Siz = 4
rel.Sym = p.To.Sym
rel.Add = p.To.Offset
rel.Type = objabi.R_ADDRMIPSTLS
case 54: /* mov tlsvar, r ==> rdhwr + lw o(r3) */
// clobbers R3 !
// NOTE: this case does not use REGTMP. If it ever does,
// remove the NOTUSETMP flag in optab.
o1 = (037<<26 + 073) | (29 << 11) | (3 << 16) // rdhwr $29, r3
o2 = OP_IRR(c.opirr(-p.As), uint32(0), uint32(REG_R3), uint32(p.To.Reg))
rel := obj.Addrel(c.cursym)
rel.Off = int32(c.pc + 4)
rel.Siz = 4
rel.Sym = p.From.Sym
rel.Add = p.From.Offset
rel.Type = objabi.R_ADDRMIPSTLS
case 55: /* mov $tlsvar, r ==> rdhwr + add */
// clobbers R3 !
// NOTE: this case does not use REGTMP. If it ever does,
// remove the NOTUSETMP flag in optab.
o1 = (037<<26 + 073) | (29 << 11) | (3 << 16) // rdhwr $29, r3
o2 = OP_IRR(c.opirr(add), uint32(0), uint32(REG_R3), uint32(p.To.Reg))
rel := obj.Addrel(c.cursym)
rel.Off = int32(c.pc + 4)
rel.Siz = 4
rel.Sym = p.From.Sym
rel.Add = p.From.Offset
rel.Type = objabi.R_ADDRMIPSTLS
case 56: /* vmov{b,h,w,d} $scon, wr */
v := c.regoff(&p.From)
o1 = OP_VI10(110, c.twobitdf(p.As), v, uint32(p.To.Reg), 7)
case 57: /* vld $soreg, wr */
v := c.lsoffset(p.As, c.regoff(&p.From))
o1 = OP_VMI10(v, uint32(p.From.Reg), uint32(p.To.Reg), 8, c.twobitdf(p.As))
case 58: /* vst wr, $soreg */
v := c.lsoffset(p.As, c.regoff(&p.To))
o1 = OP_VMI10(v, uint32(p.To.Reg), uint32(p.From.Reg), 9, c.twobitdf(p.As))
}
out[0] = o1
out[1] = o2
out[2] = o3
out[3] = o4
}
func (c *ctxt0) vregoff(a *obj.Addr) int64 {
c.instoffset = 0
c.aclass(a)
return c.instoffset
}
func (c *ctxt0) regoff(a *obj.Addr) int32 {
return int32(c.vregoff(a))
}
func (c *ctxt0) oprrr(a obj.As) uint32 {
switch a {
case AADD:
return OP(4, 0)
case AADDU:
return OP(4, 1)
case ASGT:
return OP(5, 2)
case ASGTU:
return OP(5, 3)
case AAND:
return OP(4, 4)
case AOR:
return OP(4, 5)
case AXOR:
return OP(4, 6)
case ASUB:
return OP(4, 2)
case ASUBU, ANEGW:
return OP(4, 3)
case ANOR:
return OP(4, 7)
case ASLL:
return OP(0, 4)
case ASRL:
return OP(0, 6)
case ASRA:
return OP(0, 7)
case ASLLV:
return OP(2, 4)
case ASRLV:
return OP(2, 6)
case ASRAV:
return OP(2, 7)
case AADDV:
return OP(5, 4)
case AADDVU:
return OP(5, 5)
case ASUBV:
return OP(5, 6)
case ASUBVU, ANEGV:
return OP(5, 7)
case AREM,
ADIV:
return OP(3, 2)
case AREMU,
ADIVU:
return OP(3, 3)
case AMUL:
return OP(3, 0)
case AMULU:
return OP(3, 1)
case AREMV,
ADIVV:
return OP(3, 6)
case AREMVU,
ADIVVU:
return OP(3, 7)
case AMULV:
return OP(3, 4)
case AMULVU:
return OP(3, 5)
case AJMP:
return OP(1, 0)
case AJAL:
return OP(1, 1)
case ABREAK:
return OP(1, 5)
case ASYSCALL:
return OP(1, 4)
case ATLBP:
return MMU(1, 0)
case ATLBR:
return MMU(0, 1)
case ATLBWI:
return MMU(0, 2)
case ATLBWR:
return MMU(0, 6)
case ARFE:
return MMU(2, 0)
case ADIVF:
return FPF(0, 3)
case ADIVD:
return FPD(0, 3)
case AMULF:
return FPF(0, 2)
case AMULD:
return FPD(0, 2)
case ASUBF:
return FPF(0, 1)
case ASUBD:
return FPD(0, 1)
case AADDF:
return FPF(0, 0)
case AADDD:
return FPD(0, 0)
case ATRUNCFV:
return FPF(1, 1)
case ATRUNCDV:
return FPD(1, 1)
case ATRUNCFW:
return FPF(1, 5)
case ATRUNCDW:
return FPD(1, 5)
case AMOVFV:
return FPF(4, 5)
case AMOVDV:
return FPD(4, 5)
case AMOVVF:
return FPV(4, 0)
case AMOVVD:
return FPV(4, 1)
case AMOVFW:
return FPF(4, 4)
case AMOVDW:
return FPD(4, 4)
case AMOVWF:
return FPW(4, 0)
case AMOVDF:
return FPD(4, 0)
case AMOVWD:
return FPW(4, 1)
case AMOVFD:
return FPF(4, 1)
case AABSF:
return FPF(0, 5)
case AABSD:
return FPD(0, 5)
case AMOVF:
return FPF(0, 6)
case AMOVD:
return FPD(0, 6)
case ANEGF:
return FPF(0, 7)
case ANEGD:
return FPD(0, 7)
case ACMPEQF:
return FPF(6, 2)
case ACMPEQD:
return FPD(6, 2)
case ACMPGTF:
return FPF(7, 4)
case ACMPGTD:
return FPD(7, 4)
case ACMPGEF:
return FPF(7, 6)
case ACMPGED:
return FPD(7, 6)
case ASQRTF:
return FPF(0, 4)
case ASQRTD:
return FPD(0, 4)
case ASYNC:
return OP(1, 7)
case ANOOP:
return 0
case ACMOVN:
return OP(1, 3)
case ACMOVZ:
return OP(1, 2)
case ACMOVT:
return OP(0, 1) | (1 << 16)
case ACMOVF:
return OP(0, 1) | (0 << 16)
case ACLO:
return SP(3, 4) | OP(4, 1)
case ACLZ:
return SP(3, 4) | OP(4, 0)
case AMADD:
return SP(3, 4) | OP(0, 0)
case AMSUB:
return SP(3, 4) | OP(0, 4)
}
if a < 0 {
c.ctxt.Diag("bad rrr opcode -%v", -a)
} else {
c.ctxt.Diag("bad rrr opcode %v", a)
}
return 0
}
func (c *ctxt0) opirr(a obj.As) uint32 {
switch a {
case AADD:
return SP(1, 0)
case AADDU:
return SP(1, 1)
case ASGT:
return SP(1, 2)
case ASGTU:
return SP(1, 3)
case AAND:
return SP(1, 4)
case AOR:
return SP(1, 5)
case AXOR:
return SP(1, 6)
case ALUI:
return SP(1, 7)
case ASLL:
return OP(0, 0)
case ASRL:
return OP(0, 2)
case ASRA:
return OP(0, 3)
case AADDV:
return SP(3, 0)
case AADDVU:
return SP(3, 1)
case AJMP:
return SP(0, 2)
case AJAL,
obj.ADUFFZERO,
obj.ADUFFCOPY:
return SP(0, 3)
case ABEQ:
return SP(0, 4)
case -ABEQ:
return SP(2, 4) /* likely */
case ABNE:
return SP(0, 5)
case -ABNE:
return SP(2, 5) /* likely */
case ABGEZ:
return SP(0, 1) | BCOND(0, 1)
case -ABGEZ:
return SP(0, 1) | BCOND(0, 3) /* likely */
case ABGEZAL:
return SP(0, 1) | BCOND(2, 1)
case -ABGEZAL:
return SP(0, 1) | BCOND(2, 3) /* likely */
case ABGTZ:
return SP(0, 7)
case -ABGTZ:
return SP(2, 7) /* likely */
case ABLEZ:
return SP(0, 6)
case -ABLEZ:
return SP(2, 6) /* likely */
case ABLTZ:
return SP(0, 1) | BCOND(0, 0)
case -ABLTZ:
return SP(0, 1) | BCOND(0, 2) /* likely */
case ABLTZAL:
return SP(0, 1) | BCOND(2, 0)
case -ABLTZAL:
return SP(0, 1) | BCOND(2, 2) /* likely */
case ABFPT:
return SP(2, 1) | (257 << 16)
case -ABFPT:
return SP(2, 1) | (259 << 16) /* likely */
case ABFPF:
return SP(2, 1) | (256 << 16)
case -ABFPF:
return SP(2, 1) | (258 << 16) /* likely */
case AMOVB,
AMOVBU:
return SP(5, 0)
case AMOVH,
AMOVHU:
return SP(5, 1)
case AMOVW,
AMOVWU:
return SP(5, 3)
case AMOVV:
return SP(7, 7)
case AMOVF:
return SP(7, 1)
case AMOVD:
return SP(7, 5)
case AMOVWL:
return SP(5, 2)
case AMOVWR:
return SP(5, 6)
case AMOVVL:
return SP(5, 4)
case AMOVVR:
return SP(5, 5)
case ABREAK:
return SP(5, 7)
case -AMOVWL:
return SP(4, 2)
case -AMOVWR:
return SP(4, 6)
case -AMOVVL:
return SP(3, 2)
case -AMOVVR:
return SP(3, 3)
case -AMOVB:
return SP(4, 0)
case -AMOVBU:
return SP(4, 4)
case -AMOVH:
return SP(4, 1)
case -AMOVHU:
return SP(4, 5)
case -AMOVW:
return SP(4, 3)
case -AMOVWU:
return SP(4, 7)
case -AMOVV:
return SP(6, 7)
case -AMOVF:
return SP(6, 1)
case -AMOVD:
return SP(6, 5)
case ASLLV:
return OP(7, 0)
case ASRLV:
return OP(7, 2)
case ASRAV:
return OP(7, 3)
case -ASLLV:
return OP(7, 4)
case -ASRLV:
return OP(7, 6)
case -ASRAV:
return OP(7, 7)
case ATEQ:
return OP(6, 4)
case ATNE:
return OP(6, 6)
case -ALL:
return SP(6, 0)
case -ALLV:
return SP(6, 4)
case ASC:
return SP(7, 0)
case ASCV:
return SP(7, 4)
}
if a < 0 {
c.ctxt.Diag("bad irr opcode -%v", -a)
} else {
c.ctxt.Diag("bad irr opcode %v", a)
}
return 0
}
func vshift(a obj.As) bool {
switch a {
case ASLLV,
ASRLV,
ASRAV:
return true
}
return false
}
// MSA Two-bit Data Format Field Encoding
func (c *ctxt0) twobitdf(a obj.As) uint32 {
switch a {
case AVMOVB:
return 0
case AVMOVH:
return 1
case AVMOVW:
return 2
case AVMOVD:
return 3
default:
c.ctxt.Diag("unsupported data format %v", a)
}
return 0
}
// MSA Load/Store offset have to be multiple of size of data format
func (c *ctxt0) lsoffset(a obj.As, o int32) int32 {
var mod int32
switch a {
case AVMOVB:
mod = 1
case AVMOVH:
mod = 2
case AVMOVW:
mod = 4
case AVMOVD:
mod = 8
default:
c.ctxt.Diag("unsupported instruction:%v", a)
}
if o%mod != 0 {
c.ctxt.Diag("invalid offset for %v: %d is not a multiple of %d", a, o, mod)
}
return o / mod
}