rust/library/alloc/src/string.rs

3055 lines
94 KiB
Rust
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

//! A UTF-8encoded, growable string.
//!
//! This module contains the [`String`] type, the [`ToString`] trait for
//! converting to strings, and several error types that may result from
//! working with [`String`]s.
//!
//! # Examples
//!
//! There are multiple ways to create a new [`String`] from a string literal:
//!
//! ```
//! let s = "Hello".to_string();
//!
//! let s = String::from("world");
//! let s: String = "also this".into();
//! ```
//!
//! You can create a new [`String`] from an existing one by concatenating with
//! `+`:
//!
//! ```
//! let s = "Hello".to_string();
//!
//! let message = s + " world!";
//! ```
//!
//! If you have a vector of valid UTF-8 bytes, you can make a [`String`] out of
//! it. You can do the reverse too.
//!
//! ```
//! let sparkle_heart = vec![240, 159, 146, 150];
//!
//! // We know these bytes are valid, so we'll use `unwrap()`.
//! let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
//!
//! assert_eq!("💖", sparkle_heart);
//!
//! let bytes = sparkle_heart.into_bytes();
//!
//! assert_eq!(bytes, [240, 159, 146, 150]);
//! ```
#![stable(feature = "rust1", since = "1.0.0")]
use core::error::Error;
use core::fmt;
use core::hash;
#[cfg(not(no_global_oom_handling))]
use core::iter::from_fn;
use core::iter::FusedIterator;
#[cfg(not(no_global_oom_handling))]
use core::ops::Add;
#[cfg(not(no_global_oom_handling))]
use core::ops::AddAssign;
#[cfg(not(no_global_oom_handling))]
use core::ops::Bound::{Excluded, Included, Unbounded};
use core::ops::{self, Range, RangeBounds};
use core::ptr;
use core::slice;
use core::str::pattern::Pattern;
#[cfg(not(no_global_oom_handling))]
use crate::alloc::Allocator;
#[cfg(not(no_global_oom_handling))]
use crate::borrow::{Cow, ToOwned};
use crate::boxed::Box;
use crate::collections::TryReserveError;
use crate::str::{self, from_utf8_unchecked_mut, Chars, Utf8Error};
#[cfg(not(no_global_oom_handling))]
use crate::str::{from_boxed_utf8_unchecked, FromStr};
use crate::vec::Vec;
/// A UTF-8encoded, growable string.
///
/// `String` is the most common string type. It has ownership over the contents
/// of the string, stored in a heap-allocated buffer (see [Representation](#representation)).
/// It is closely related to its borrowed counterpart, the primitive [`str`].
///
/// # Examples
///
/// You can create a `String` from [a literal string][`&str`] with [`String::from`]:
///
/// [`String::from`]: From::from
///
/// ```
/// let hello = String::from("Hello, world!");
/// ```
///
/// You can append a [`char`] to a `String` with the [`push`] method, and
/// append a [`&str`] with the [`push_str`] method:
///
/// ```
/// let mut hello = String::from("Hello, ");
///
/// hello.push('w');
/// hello.push_str("orld!");
/// ```
///
/// [`push`]: String::push
/// [`push_str`]: String::push_str
///
/// If you have a vector of UTF-8 bytes, you can create a `String` from it with
/// the [`from_utf8`] method:
///
/// ```
/// // some bytes, in a vector
/// let sparkle_heart = vec![240, 159, 146, 150];
///
/// // We know these bytes are valid, so we'll use `unwrap()`.
/// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
///
/// assert_eq!("💖", sparkle_heart);
/// ```
///
/// [`from_utf8`]: String::from_utf8
///
/// # UTF-8
///
/// `String`s are always valid UTF-8. If you need a non-UTF-8 string, consider
/// [`OsString`]. It is similar, but without the UTF-8 constraint. Because UTF-8
/// is a variable width encoding, `String`s are typically smaller than an array of
/// the same `chars`:
///
/// ```
/// use std::mem;
///
/// // `s` is ASCII which represents each `char` as one byte
/// let s = "hello";
/// assert_eq!(s.len(), 5);
///
/// // A `char` array with the same contents would be longer because
/// // every `char` is four bytes
/// let s = ['h', 'e', 'l', 'l', 'o'];
/// let size: usize = s.into_iter().map(|c| mem::size_of_val(&c)).sum();
/// assert_eq!(size, 20);
///
/// // However, for non-ASCII strings, the difference will be smaller
/// // and sometimes they are the same
/// let s = "💖💖💖💖💖";
/// assert_eq!(s.len(), 20);
///
/// let s = ['💖', '💖', '💖', '💖', '💖'];
/// let size: usize = s.into_iter().map(|c| mem::size_of_val(&c)).sum();
/// assert_eq!(size, 20);
/// ```
///
/// This raises interesting questions as to how `s[i]` should work.
/// What should `i` be here? Several options include byte indices and
/// `char` indices but, because of UTF-8 encoding, only byte indices
/// would provide constant time indexing. Getting the `i`th `char`, for
/// example, is available using [`chars`]:
///
/// ```
/// let s = "hello";
/// let third_character = s.chars().nth(2);
/// assert_eq!(third_character, Some('l'));
///
/// let s = "💖💖💖💖💖";
/// let third_character = s.chars().nth(2);
/// assert_eq!(third_character, Some('💖'));
/// ```
///
/// Next, what should `s[i]` return? Because indexing returns a reference
/// to underlying data it could be `&u8`, `&[u8]`, or something else similar.
/// Since we're only providing one index, `&u8` makes the most sense but that
/// might not be what the user expects and can be explicitly achieved with
/// [`as_bytes()`]:
///
/// ```
/// // The first byte is 104 - the byte value of `'h'`
/// let s = "hello";
/// assert_eq!(s.as_bytes()[0], 104);
/// // or
/// assert_eq!(s.as_bytes()[0], b'h');
///
/// // The first byte is 240 which isn't obviously useful
/// let s = "💖💖💖💖💖";
/// assert_eq!(s.as_bytes()[0], 240);
/// ```
///
/// Due to these ambiguities/restrictions, indexing with a `usize` is simply
/// forbidden:
///
/// ```compile_fail,E0277
/// let s = "hello";
///
/// // The following will not compile!
/// println!("The first letter of s is {}", s[0]);
/// ```
///
/// It is more clear, however, how `&s[i..j]` should work (that is,
/// indexing with a range). It should accept byte indices (to be constant-time)
/// and return a `&str` which is UTF-8 encoded. This is also called "string slicing".
/// Note this will panic if the byte indices provided are not character
/// boundaries - see [`is_char_boundary`] for more details. See the implementations
/// for [`SliceIndex<str>`] for more details on string slicing. For a non-panicking
/// version of string slicing, see [`get`].
///
/// [`OsString`]: ../../std/ffi/struct.OsString.html "ffi::OsString"
/// [`SliceIndex<str>`]: core::slice::SliceIndex
/// [`as_bytes()`]: str::as_bytes
/// [`get`]: str::get
/// [`is_char_boundary`]: str::is_char_boundary
///
/// The [`bytes`] and [`chars`] methods return iterators over the bytes and
/// codepoints of the string, respectively. To iterate over codepoints along
/// with byte indices, use [`char_indices`].
///
/// [`bytes`]: str::bytes
/// [`chars`]: str::chars
/// [`char_indices`]: str::char_indices
///
/// # Deref
///
/// `String` implements <code>[Deref]<Target = [str]></code>, and so inherits all of [`str`]'s
/// methods. In addition, this means that you can pass a `String` to a
/// function which takes a [`&str`] by using an ampersand (`&`):
///
/// ```
/// fn takes_str(s: &str) { }
///
/// let s = String::from("Hello");
///
/// takes_str(&s);
/// ```
///
/// This will create a [`&str`] from the `String` and pass it in. This
/// conversion is very inexpensive, and so generally, functions will accept
/// [`&str`]s as arguments unless they need a `String` for some specific
/// reason.
///
/// In certain cases Rust doesn't have enough information to make this
/// conversion, known as [`Deref`] coercion. In the following example a string
/// slice [`&'a str`][`&str`] implements the trait `TraitExample`, and the function
/// `example_func` takes anything that implements the trait. In this case Rust
/// would need to make two implicit conversions, which Rust doesn't have the
/// means to do. For that reason, the following example will not compile.
///
/// ```compile_fail,E0277
/// trait TraitExample {}
///
/// impl<'a> TraitExample for &'a str {}
///
/// fn example_func<A: TraitExample>(example_arg: A) {}
///
/// let example_string = String::from("example_string");
/// example_func(&example_string);
/// ```
///
/// There are two options that would work instead. The first would be to
/// change the line `example_func(&example_string);` to
/// `example_func(example_string.as_str());`, using the method [`as_str()`]
/// to explicitly extract the string slice containing the string. The second
/// way changes `example_func(&example_string);` to
/// `example_func(&*example_string);`. In this case we are dereferencing a
/// `String` to a [`str`], then referencing the [`str`] back to
/// [`&str`]. The second way is more idiomatic, however both work to do the
/// conversion explicitly rather than relying on the implicit conversion.
///
/// # Representation
///
/// A `String` is made up of three components: a pointer to some bytes, a
/// length, and a capacity. The pointer points to the internal buffer which `String`
/// uses to store its data. The length is the number of bytes currently stored
/// in the buffer, and the capacity is the size of the buffer in bytes. As such,
/// the length will always be less than or equal to the capacity.
///
/// This buffer is always stored on the heap.
///
/// You can look at these with the [`as_ptr`], [`len`], and [`capacity`]
/// methods:
///
/// ```
/// use std::mem;
///
/// let story = String::from("Once upon a time...");
///
// FIXME Update this when vec_into_raw_parts is stabilized
/// // Prevent automatically dropping the String's data
/// let mut story = mem::ManuallyDrop::new(story);
///
/// let ptr = story.as_mut_ptr();
/// let len = story.len();
/// let capacity = story.capacity();
///
/// // story has nineteen bytes
/// assert_eq!(19, len);
///
/// // We can re-build a String out of ptr, len, and capacity. This is all
/// // unsafe because we are responsible for making sure the components are
/// // valid:
/// let s = unsafe { String::from_raw_parts(ptr, len, capacity) } ;
///
/// assert_eq!(String::from("Once upon a time..."), s);
/// ```
///
/// [`as_ptr`]: str::as_ptr
/// [`len`]: String::len
/// [`capacity`]: String::capacity
///
/// If a `String` has enough capacity, adding elements to it will not
/// re-allocate. For example, consider this program:
///
/// ```
/// let mut s = String::new();
///
/// println!("{}", s.capacity());
///
/// for _ in 0..5 {
/// s.push_str("hello");
/// println!("{}", s.capacity());
/// }
/// ```
///
/// This will output the following:
///
/// ```text
/// 0
/// 8
/// 16
/// 16
/// 32
/// 32
/// ```
///
/// At first, we have no memory allocated at all, but as we append to the
/// string, it increases its capacity appropriately. If we instead use the
/// [`with_capacity`] method to allocate the correct capacity initially:
///
/// ```
/// let mut s = String::with_capacity(25);
///
/// println!("{}", s.capacity());
///
/// for _ in 0..5 {
/// s.push_str("hello");
/// println!("{}", s.capacity());
/// }
/// ```
///
/// [`with_capacity`]: String::with_capacity
///
/// We end up with a different output:
///
/// ```text
/// 25
/// 25
/// 25
/// 25
/// 25
/// 25
/// ```
///
/// Here, there's no need to allocate more memory inside the loop.
///
/// [str]: prim@str "str"
/// [`str`]: prim@str "str"
/// [`&str`]: prim@str "&str"
/// [Deref]: core::ops::Deref "ops::Deref"
/// [`Deref`]: core::ops::Deref "ops::Deref"
/// [`as_str()`]: String::as_str
#[derive(PartialEq, PartialOrd, Eq, Ord)]
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), lang = "String")]
pub struct String {
vec: Vec<u8>,
}
/// A possible error value when converting a `String` from a UTF-8 byte vector.
///
/// This type is the error type for the [`from_utf8`] method on [`String`]. It
/// is designed in such a way to carefully avoid reallocations: the
/// [`into_bytes`] method will give back the byte vector that was used in the
/// conversion attempt.
///
/// [`from_utf8`]: String::from_utf8
/// [`into_bytes`]: FromUtf8Error::into_bytes
///
/// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
/// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
/// an analogue to `FromUtf8Error`, and you can get one from a `FromUtf8Error`
/// through the [`utf8_error`] method.
///
/// [`Utf8Error`]: str::Utf8Error "std::str::Utf8Error"
/// [`std::str`]: core::str "std::str"
/// [`&str`]: prim@str "&str"
/// [`utf8_error`]: FromUtf8Error::utf8_error
///
/// # Examples
///
/// ```
/// // some invalid bytes, in a vector
/// let bytes = vec![0, 159];
///
/// let value = String::from_utf8(bytes);
///
/// assert!(value.is_err());
/// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(no_global_oom_handling), derive(Clone))]
#[derive(Debug, PartialEq, Eq)]
pub struct FromUtf8Error {
bytes: Vec<u8>,
error: Utf8Error,
}
/// A possible error value when converting a `String` from a UTF-16 byte slice.
///
/// This type is the error type for the [`from_utf16`] method on [`String`].
///
/// [`from_utf16`]: String::from_utf16
///
/// # Examples
///
/// ```
/// // 𝄞mu<invalid>ic
/// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
/// 0xD800, 0x0069, 0x0063];
///
/// assert!(String::from_utf16(v).is_err());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
pub struct FromUtf16Error(());
impl String {
/// Creates a new empty `String`.
///
/// Given that the `String` is empty, this will not allocate any initial
/// buffer. While that means that this initial operation is very
/// inexpensive, it may cause excessive allocation later when you add
/// data. If you have an idea of how much data the `String` will hold,
/// consider the [`with_capacity`] method to prevent excessive
/// re-allocation.
///
/// [`with_capacity`]: String::with_capacity
///
/// # Examples
///
/// ```
/// let s = String::new();
/// ```
#[inline]
#[rustc_const_stable(feature = "const_string_new", since = "1.39.0")]
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use]
pub const fn new() -> String {
String { vec: Vec::new() }
}
/// Creates a new empty `String` with at least the specified capacity.
///
/// `String`s have an internal buffer to hold their data. The capacity is
/// the length of that buffer, and can be queried with the [`capacity`]
/// method. This method creates an empty `String`, but one with an initial
/// buffer that can hold at least `capacity` bytes. This is useful when you
/// may be appending a bunch of data to the `String`, reducing the number of
/// reallocations it needs to do.
///
/// [`capacity`]: String::capacity
///
/// If the given capacity is `0`, no allocation will occur, and this method
/// is identical to the [`new`] method.
///
/// [`new`]: String::new
///
/// # Examples
///
/// ```
/// let mut s = String::with_capacity(10);
///
/// // The String contains no chars, even though it has capacity for more
/// assert_eq!(s.len(), 0);
///
/// // These are all done without reallocating...
/// let cap = s.capacity();
/// for _ in 0..10 {
/// s.push('a');
/// }
///
/// assert_eq!(s.capacity(), cap);
///
/// // ...but this may make the string reallocate
/// s.push('a');
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use]
pub fn with_capacity(capacity: usize) -> String {
String { vec: Vec::with_capacity(capacity) }
}
/// Creates a new empty `String` with at least the specified capacity.
///
/// # Errors
///
/// Returns [`Err`] if the capacity exceeds `isize::MAX` bytes,
/// or if the memory allocator reports failure.
///
#[inline]
#[unstable(feature = "try_with_capacity", issue = "91913")]
pub fn try_with_capacity(capacity: usize) -> Result<String, TryReserveError> {
Ok(String { vec: Vec::try_with_capacity(capacity)? })
}
// HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
// required for this method definition, is not available. Since we don't
// require this method for testing purposes, I'll just stub it
// NB see the slice::hack module in slice.rs for more information
#[inline]
#[cfg(test)]
pub fn from_str(_: &str) -> String {
panic!("not available with cfg(test)");
}
/// Converts a vector of bytes to a `String`.
///
/// A string ([`String`]) is made of bytes ([`u8`]), and a vector of bytes
/// ([`Vec<u8>`]) is made of bytes, so this function converts between the
/// two. Not all byte slices are valid `String`s, however: `String`
/// requires that it is valid UTF-8. `from_utf8()` checks to ensure that
/// the bytes are valid UTF-8, and then does the conversion.
///
/// If you are sure that the byte slice is valid UTF-8, and you don't want
/// to incur the overhead of the validity check, there is an unsafe version
/// of this function, [`from_utf8_unchecked`], which has the same behavior
/// but skips the check.
///
/// This method will take care to not copy the vector, for efficiency's
/// sake.
///
/// If you need a [`&str`] instead of a `String`, consider
/// [`str::from_utf8`].
///
/// The inverse of this method is [`into_bytes`].
///
/// # Errors
///
/// Returns [`Err`] if the slice is not UTF-8 with a description as to why the
/// provided bytes are not UTF-8. The vector you moved in is also included.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// // some bytes, in a vector
/// let sparkle_heart = vec![240, 159, 146, 150];
///
/// // We know these bytes are valid, so we'll use `unwrap()`.
/// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
///
/// assert_eq!("💖", sparkle_heart);
/// ```
///
/// Incorrect bytes:
///
/// ```
/// // some invalid bytes, in a vector
/// let sparkle_heart = vec![0, 159, 146, 150];
///
/// assert!(String::from_utf8(sparkle_heart).is_err());
/// ```
///
/// See the docs for [`FromUtf8Error`] for more details on what you can do
/// with this error.
///
/// [`from_utf8_unchecked`]: String::from_utf8_unchecked
/// [`Vec<u8>`]: crate::vec::Vec "Vec"
/// [`&str`]: prim@str "&str"
/// [`into_bytes`]: String::into_bytes
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn from_utf8(vec: Vec<u8>) -> Result<String, FromUtf8Error> {
match str::from_utf8(&vec) {
Ok(..) => Ok(String { vec }),
Err(e) => Err(FromUtf8Error { bytes: vec, error: e }),
}
}
/// Converts a slice of bytes to a string, including invalid characters.
///
/// Strings are made of bytes ([`u8`]), and a slice of bytes
/// ([`&[u8]`][byteslice]) is made of bytes, so this function converts
/// between the two. Not all byte slices are valid strings, however: strings
/// are required to be valid UTF-8. During this conversion,
/// `from_utf8_lossy()` will replace any invalid UTF-8 sequences with
/// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD], which looks like this: <20>
///
/// [byteslice]: prim@slice
/// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
///
/// If you are sure that the byte slice is valid UTF-8, and you don't want
/// to incur the overhead of the conversion, there is an unsafe version
/// of this function, [`from_utf8_unchecked`], which has the same behavior
/// but skips the checks.
///
/// [`from_utf8_unchecked`]: String::from_utf8_unchecked
///
/// This function returns a [`Cow<'a, str>`]. If our byte slice is invalid
/// UTF-8, then we need to insert the replacement characters, which will
/// change the size of the string, and hence, require a `String`. But if
/// it's already valid UTF-8, we don't need a new allocation. This return
/// type allows us to handle both cases.
///
/// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// // some bytes, in a vector
/// let sparkle_heart = vec![240, 159, 146, 150];
///
/// let sparkle_heart = String::from_utf8_lossy(&sparkle_heart);
///
/// assert_eq!("💖", sparkle_heart);
/// ```
///
/// Incorrect bytes:
///
/// ```
/// // some invalid bytes
/// let input = b"Hello \xF0\x90\x80World";
/// let output = String::from_utf8_lossy(input);
///
/// assert_eq!("Hello <20>World", output);
/// ```
#[must_use]
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn from_utf8_lossy(v: &[u8]) -> Cow<'_, str> {
let mut iter = v.utf8_chunks();
let first_valid = if let Some(chunk) = iter.next() {
let valid = chunk.valid();
if chunk.invalid().is_empty() {
debug_assert_eq!(valid.len(), v.len());
return Cow::Borrowed(valid);
}
valid
} else {
return Cow::Borrowed("");
};
const REPLACEMENT: &str = "\u{FFFD}";
let mut res = String::with_capacity(v.len());
res.push_str(first_valid);
res.push_str(REPLACEMENT);
for chunk in iter {
res.push_str(chunk.valid());
if !chunk.invalid().is_empty() {
res.push_str(REPLACEMENT);
}
}
Cow::Owned(res)
}
/// Decode a UTF-16encoded vector `v` into a `String`, returning [`Err`]
/// if `v` contains any invalid data.
///
/// # Examples
///
/// ```
/// // 𝄞music
/// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
/// 0x0073, 0x0069, 0x0063];
/// assert_eq!(String::from("𝄞music"),
/// String::from_utf16(v).unwrap());
///
/// // 𝄞mu<invalid>ic
/// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
/// 0xD800, 0x0069, 0x0063];
/// assert!(String::from_utf16(v).is_err());
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn from_utf16(v: &[u16]) -> Result<String, FromUtf16Error> {
// This isn't done via collect::<Result<_, _>>() for performance reasons.
// FIXME: the function can be simplified again when #48994 is closed.
let mut ret = String::with_capacity(v.len());
for c in char::decode_utf16(v.iter().cloned()) {
if let Ok(c) = c {
ret.push(c);
} else {
return Err(FromUtf16Error(()));
}
}
Ok(ret)
}
/// Decode a UTF-16encoded slice `v` into a `String`, replacing
/// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
///
/// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
/// `from_utf16_lossy` returns a `String` since the UTF-16 to UTF-8
/// conversion requires a memory allocation.
///
/// [`from_utf8_lossy`]: String::from_utf8_lossy
/// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
/// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
///
/// # Examples
///
/// ```
/// // 𝄞mus<invalid>ic<invalid>
/// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
/// 0x0073, 0xDD1E, 0x0069, 0x0063,
/// 0xD834];
///
/// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
/// String::from_utf16_lossy(v));
/// ```
#[cfg(not(no_global_oom_handling))]
#[must_use]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn from_utf16_lossy(v: &[u16]) -> String {
char::decode_utf16(v.iter().cloned())
.map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
.collect()
}
/// Decode a UTF-16LEencoded vector `v` into a `String`, returning [`Err`]
/// if `v` contains any invalid data.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(str_from_utf16_endian)]
/// // 𝄞music
/// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
/// 0x73, 0x00, 0x69, 0x00, 0x63, 0x00];
/// assert_eq!(String::from("𝄞music"),
/// String::from_utf16le(v).unwrap());
///
/// // 𝄞mu<invalid>ic
/// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
/// 0x00, 0xD8, 0x69, 0x00, 0x63, 0x00];
/// assert!(String::from_utf16le(v).is_err());
/// ```
#[cfg(not(no_global_oom_handling))]
#[unstable(feature = "str_from_utf16_endian", issue = "116258")]
pub fn from_utf16le(v: &[u8]) -> Result<String, FromUtf16Error> {
if v.len() % 2 != 0 {
return Err(FromUtf16Error(()));
}
match (cfg!(target_endian = "little"), unsafe { v.align_to::<u16>() }) {
(true, ([], v, [])) => Self::from_utf16(v),
_ => char::decode_utf16(v.array_chunks::<2>().copied().map(u16::from_le_bytes))
.collect::<Result<_, _>>()
.map_err(|_| FromUtf16Error(())),
}
}
/// Decode a UTF-16LEencoded slice `v` into a `String`, replacing
/// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
///
/// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
/// `from_utf16le_lossy` returns a `String` since the UTF-16 to UTF-8
/// conversion requires a memory allocation.
///
/// [`from_utf8_lossy`]: String::from_utf8_lossy
/// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
/// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(str_from_utf16_endian)]
/// // 𝄞mus<invalid>ic<invalid>
/// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
/// 0x73, 0x00, 0x1E, 0xDD, 0x69, 0x00, 0x63, 0x00,
/// 0x34, 0xD8];
///
/// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
/// String::from_utf16le_lossy(v));
/// ```
#[cfg(not(no_global_oom_handling))]
#[unstable(feature = "str_from_utf16_endian", issue = "116258")]
pub fn from_utf16le_lossy(v: &[u8]) -> String {
match (cfg!(target_endian = "little"), unsafe { v.align_to::<u16>() }) {
(true, ([], v, [])) => Self::from_utf16_lossy(v),
(true, ([], v, [_remainder])) => Self::from_utf16_lossy(v) + "\u{FFFD}",
_ => {
let mut iter = v.array_chunks::<2>();
let string = char::decode_utf16(iter.by_ref().copied().map(u16::from_le_bytes))
.map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
.collect();
if iter.remainder().is_empty() { string } else { string + "\u{FFFD}" }
}
}
}
/// Decode a UTF-16BEencoded vector `v` into a `String`, returning [`Err`]
/// if `v` contains any invalid data.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(str_from_utf16_endian)]
/// // 𝄞music
/// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
/// 0x00, 0x73, 0x00, 0x69, 0x00, 0x63];
/// assert_eq!(String::from("𝄞music"),
/// String::from_utf16be(v).unwrap());
///
/// // 𝄞mu<invalid>ic
/// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
/// 0xD8, 0x00, 0x00, 0x69, 0x00, 0x63];
/// assert!(String::from_utf16be(v).is_err());
/// ```
#[cfg(not(no_global_oom_handling))]
#[unstable(feature = "str_from_utf16_endian", issue = "116258")]
pub fn from_utf16be(v: &[u8]) -> Result<String, FromUtf16Error> {
if v.len() % 2 != 0 {
return Err(FromUtf16Error(()));
}
match (cfg!(target_endian = "big"), unsafe { v.align_to::<u16>() }) {
(true, ([], v, [])) => Self::from_utf16(v),
_ => char::decode_utf16(v.array_chunks::<2>().copied().map(u16::from_be_bytes))
.collect::<Result<_, _>>()
.map_err(|_| FromUtf16Error(())),
}
}
/// Decode a UTF-16BEencoded slice `v` into a `String`, replacing
/// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
///
/// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
/// `from_utf16le_lossy` returns a `String` since the UTF-16 to UTF-8
/// conversion requires a memory allocation.
///
/// [`from_utf8_lossy`]: String::from_utf8_lossy
/// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
/// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(str_from_utf16_endian)]
/// // 𝄞mus<invalid>ic<invalid>
/// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
/// 0x00, 0x73, 0xDD, 0x1E, 0x00, 0x69, 0x00, 0x63,
/// 0xD8, 0x34];
///
/// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
/// String::from_utf16be_lossy(v));
/// ```
#[cfg(not(no_global_oom_handling))]
#[unstable(feature = "str_from_utf16_endian", issue = "116258")]
pub fn from_utf16be_lossy(v: &[u8]) -> String {
match (cfg!(target_endian = "big"), unsafe { v.align_to::<u16>() }) {
(true, ([], v, [])) => Self::from_utf16_lossy(v),
(true, ([], v, [_remainder])) => Self::from_utf16_lossy(v) + "\u{FFFD}",
_ => {
let mut iter = v.array_chunks::<2>();
let string = char::decode_utf16(iter.by_ref().copied().map(u16::from_be_bytes))
.map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
.collect();
if iter.remainder().is_empty() { string } else { string + "\u{FFFD}" }
}
}
}
/// Decomposes a `String` into its raw components: `(pointer, length, capacity)`.
///
/// Returns the raw pointer to the underlying data, the length of
/// the string (in bytes), and the allocated capacity of the data
/// (in bytes). These are the same arguments in the same order as
/// the arguments to [`from_raw_parts`].
///
/// After calling this function, the caller is responsible for the
/// memory previously managed by the `String`. The only way to do
/// this is to convert the raw pointer, length, and capacity back
/// into a `String` with the [`from_raw_parts`] function, allowing
/// the destructor to perform the cleanup.
///
/// [`from_raw_parts`]: String::from_raw_parts
///
/// # Examples
///
/// ```
/// #![feature(vec_into_raw_parts)]
/// let s = String::from("hello");
///
/// let (ptr, len, cap) = s.into_raw_parts();
///
/// let rebuilt = unsafe { String::from_raw_parts(ptr, len, cap) };
/// assert_eq!(rebuilt, "hello");
/// ```
#[must_use = "`self` will be dropped if the result is not used"]
#[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
pub fn into_raw_parts(self) -> (*mut u8, usize, usize) {
self.vec.into_raw_parts()
}
/// Creates a new `String` from a pointer, a length and a capacity.
///
/// # Safety
///
/// This is highly unsafe, due to the number of invariants that aren't
/// checked:
///
/// * The memory at `buf` needs to have been previously allocated by the
/// same allocator the standard library uses, with a required alignment of exactly 1.
/// * `length` needs to be less than or equal to `capacity`.
/// * `capacity` needs to be the correct value.
/// * The first `length` bytes at `buf` need to be valid UTF-8.
///
/// Violating these may cause problems like corrupting the allocator's
/// internal data structures. For example, it is normally **not** safe to
/// build a `String` from a pointer to a C `char` array containing UTF-8
/// _unless_ you are certain that array was originally allocated by the
/// Rust standard library's allocator.
///
/// The ownership of `buf` is effectively transferred to the
/// `String` which may then deallocate, reallocate or change the
/// contents of memory pointed to by the pointer at will. Ensure
/// that nothing else uses the pointer after calling this
/// function.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// unsafe {
/// let s = String::from("hello");
///
// FIXME Update this when vec_into_raw_parts is stabilized
/// // Prevent automatically dropping the String's data
/// let mut s = mem::ManuallyDrop::new(s);
///
/// let ptr = s.as_mut_ptr();
/// let len = s.len();
/// let capacity = s.capacity();
///
/// let s = String::from_raw_parts(ptr, len, capacity);
///
/// assert_eq!(String::from("hello"), s);
/// }
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn from_raw_parts(buf: *mut u8, length: usize, capacity: usize) -> String {
unsafe { String { vec: Vec::from_raw_parts(buf, length, capacity) } }
}
/// Converts a vector of bytes to a `String` without checking that the
/// string contains valid UTF-8.
///
/// See the safe version, [`from_utf8`], for more details.
///
/// [`from_utf8`]: String::from_utf8
///
/// # Safety
///
/// This function is unsafe because it does not check that the bytes passed
/// to it are valid UTF-8. If this constraint is violated, it may cause
/// memory unsafety issues with future users of the `String`, as the rest of
/// the standard library assumes that `String`s are valid UTF-8.
///
/// # Examples
///
/// ```
/// // some bytes, in a vector
/// let sparkle_heart = vec![240, 159, 146, 150];
///
/// let sparkle_heart = unsafe {
/// String::from_utf8_unchecked(sparkle_heart)
/// };
///
/// assert_eq!("💖", sparkle_heart);
/// ```
#[inline]
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn from_utf8_unchecked(bytes: Vec<u8>) -> String {
String { vec: bytes }
}
/// Converts a `String` into a byte vector.
///
/// This consumes the `String`, so we do not need to copy its contents.
///
/// # Examples
///
/// ```
/// let s = String::from("hello");
/// let bytes = s.into_bytes();
///
/// assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]);
/// ```
#[inline]
#[must_use = "`self` will be dropped if the result is not used"]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn into_bytes(self) -> Vec<u8> {
self.vec
}
/// Extracts a string slice containing the entire `String`.
///
/// # Examples
///
/// ```
/// let s = String::from("foo");
///
/// assert_eq!("foo", s.as_str());
/// ```
#[inline]
#[must_use]
#[stable(feature = "string_as_str", since = "1.7.0")]
pub fn as_str(&self) -> &str {
self
}
/// Converts a `String` into a mutable string slice.
///
/// # Examples
///
/// ```
/// let mut s = String::from("foobar");
/// let s_mut_str = s.as_mut_str();
///
/// s_mut_str.make_ascii_uppercase();
///
/// assert_eq!("FOOBAR", s_mut_str);
/// ```
#[inline]
#[must_use]
#[stable(feature = "string_as_str", since = "1.7.0")]
pub fn as_mut_str(&mut self) -> &mut str {
self
}
/// Appends a given string slice onto the end of this `String`.
///
/// # Examples
///
/// ```
/// let mut s = String::from("foo");
///
/// s.push_str("bar");
///
/// assert_eq!("foobar", s);
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_confusables("append", "push")]
pub fn push_str(&mut self, string: &str) {
self.vec.extend_from_slice(string.as_bytes())
}
/// Copies elements from `src` range to the end of the string.
///
/// # Panics
///
/// Panics if the starting point or end point do not lie on a [`char`]
/// boundary, or if they're out of bounds.
///
/// # Examples
///
/// ```
/// #![feature(string_extend_from_within)]
/// let mut string = String::from("abcde");
///
/// string.extend_from_within(2..);
/// assert_eq!(string, "abcdecde");
///
/// string.extend_from_within(..2);
/// assert_eq!(string, "abcdecdeab");
///
/// string.extend_from_within(4..8);
/// assert_eq!(string, "abcdecdeabecde");
/// ```
#[cfg(not(no_global_oom_handling))]
#[unstable(feature = "string_extend_from_within", issue = "103806")]
pub fn extend_from_within<R>(&mut self, src: R)
where
R: RangeBounds<usize>,
{
let src @ Range { start, end } = slice::range(src, ..self.len());
assert!(self.is_char_boundary(start));
assert!(self.is_char_boundary(end));
self.vec.extend_from_within(src);
}
/// Returns this `String`'s capacity, in bytes.
///
/// # Examples
///
/// ```
/// let s = String::with_capacity(10);
///
/// assert!(s.capacity() >= 10);
/// ```
#[inline]
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn capacity(&self) -> usize {
self.vec.capacity()
}
/// Reserves capacity for at least `additional` bytes more than the
/// current length. The allocator may reserve more space to speculatively
/// avoid frequent allocations. After calling `reserve`,
/// capacity will be greater than or equal to `self.len() + additional`.
/// Does nothing if capacity is already sufficient.
///
/// # Panics
///
/// Panics if the new capacity overflows [`usize`].
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let mut s = String::new();
///
/// s.reserve(10);
///
/// assert!(s.capacity() >= 10);
/// ```
///
/// This might not actually increase the capacity:
///
/// ```
/// let mut s = String::with_capacity(10);
/// s.push('a');
/// s.push('b');
///
/// // s now has a length of 2 and a capacity of at least 10
/// let capacity = s.capacity();
/// assert_eq!(2, s.len());
/// assert!(capacity >= 10);
///
/// // Since we already have at least an extra 8 capacity, calling this...
/// s.reserve(8);
///
/// // ... doesn't actually increase.
/// assert_eq!(capacity, s.capacity());
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn reserve(&mut self, additional: usize) {
self.vec.reserve(additional)
}
/// Reserves the minimum capacity for at least `additional` bytes more than
/// the current length. Unlike [`reserve`], this will not
/// deliberately over-allocate to speculatively avoid frequent allocations.
/// After calling `reserve_exact`, capacity will be greater than or equal to
/// `self.len() + additional`. Does nothing if the capacity is already
/// sufficient.
///
/// [`reserve`]: String::reserve
///
/// # Panics
///
/// Panics if the new capacity overflows [`usize`].
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let mut s = String::new();
///
/// s.reserve_exact(10);
///
/// assert!(s.capacity() >= 10);
/// ```
///
/// This might not actually increase the capacity:
///
/// ```
/// let mut s = String::with_capacity(10);
/// s.push('a');
/// s.push('b');
///
/// // s now has a length of 2 and a capacity of at least 10
/// let capacity = s.capacity();
/// assert_eq!(2, s.len());
/// assert!(capacity >= 10);
///
/// // Since we already have at least an extra 8 capacity, calling this...
/// s.reserve_exact(8);
///
/// // ... doesn't actually increase.
/// assert_eq!(capacity, s.capacity());
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn reserve_exact(&mut self, additional: usize) {
self.vec.reserve_exact(additional)
}
/// Tries to reserve capacity for at least `additional` bytes more than the
/// current length. The allocator may reserve more space to speculatively
/// avoid frequent allocations. After calling `try_reserve`, capacity will be
/// greater than or equal to `self.len() + additional` if it returns
/// `Ok(())`. Does nothing if capacity is already sufficient. This method
/// preserves the contents even if an error occurs.
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// use std::collections::TryReserveError;
///
/// fn process_data(data: &str) -> Result<String, TryReserveError> {
/// let mut output = String::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// output.try_reserve(data.len())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// output.push_str(data);
///
/// Ok(output)
/// }
/// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
/// ```
#[stable(feature = "try_reserve", since = "1.57.0")]
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.vec.try_reserve(additional)
}
/// Tries to reserve the minimum capacity for at least `additional` bytes
/// more than the current length. Unlike [`try_reserve`], this will not
/// deliberately over-allocate to speculatively avoid frequent allocations.
/// After calling `try_reserve_exact`, capacity will be greater than or
/// equal to `self.len() + additional` if it returns `Ok(())`.
/// Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it
/// requests. Therefore, capacity can not be relied upon to be precisely
/// minimal. Prefer [`try_reserve`] if future insertions are expected.
///
/// [`try_reserve`]: String::try_reserve
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// use std::collections::TryReserveError;
///
/// fn process_data(data: &str) -> Result<String, TryReserveError> {
/// let mut output = String::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// output.try_reserve_exact(data.len())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// output.push_str(data);
///
/// Ok(output)
/// }
/// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
/// ```
#[stable(feature = "try_reserve", since = "1.57.0")]
pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.vec.try_reserve_exact(additional)
}
/// Shrinks the capacity of this `String` to match its length.
///
/// # Examples
///
/// ```
/// let mut s = String::from("foo");
///
/// s.reserve(100);
/// assert!(s.capacity() >= 100);
///
/// s.shrink_to_fit();
/// assert_eq!(3, s.capacity());
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn shrink_to_fit(&mut self) {
self.vec.shrink_to_fit()
}
/// Shrinks the capacity of this `String` with a lower bound.
///
/// The capacity will remain at least as large as both the length
/// and the supplied value.
///
/// If the current capacity is less than the lower limit, this is a no-op.
///
/// # Examples
///
/// ```
/// let mut s = String::from("foo");
///
/// s.reserve(100);
/// assert!(s.capacity() >= 100);
///
/// s.shrink_to(10);
/// assert!(s.capacity() >= 10);
/// s.shrink_to(0);
/// assert!(s.capacity() >= 3);
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "shrink_to", since = "1.56.0")]
pub fn shrink_to(&mut self, min_capacity: usize) {
self.vec.shrink_to(min_capacity)
}
/// Appends the given [`char`] to the end of this `String`.
///
/// # Examples
///
/// ```
/// let mut s = String::from("abc");
///
/// s.push('1');
/// s.push('2');
/// s.push('3');
///
/// assert_eq!("abc123", s);
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn push(&mut self, ch: char) {
match ch.len_utf8() {
1 => self.vec.push(ch as u8),
_ => self.vec.extend_from_slice(ch.encode_utf8(&mut [0; 4]).as_bytes()),
}
}
/// Returns a byte slice of this `String`'s contents.
///
/// The inverse of this method is [`from_utf8`].
///
/// [`from_utf8`]: String::from_utf8
///
/// # Examples
///
/// ```
/// let s = String::from("hello");
///
/// assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes());
/// ```
#[inline]
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn as_bytes(&self) -> &[u8] {
&self.vec
}
/// Shortens this `String` to the specified length.
///
/// If `new_len` is greater than or equal to the string's current length, this has no
/// effect.
///
/// Note that this method has no effect on the allocated capacity
/// of the string
///
/// # Panics
///
/// Panics if `new_len` does not lie on a [`char`] boundary.
///
/// # Examples
///
/// ```
/// let mut s = String::from("hello");
///
/// s.truncate(2);
///
/// assert_eq!("he", s);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn truncate(&mut self, new_len: usize) {
if new_len <= self.len() {
assert!(self.is_char_boundary(new_len));
self.vec.truncate(new_len)
}
}
/// Removes the last character from the string buffer and returns it.
///
/// Returns [`None`] if this `String` is empty.
///
/// # Examples
///
/// ```
/// let mut s = String::from("abč");
///
/// assert_eq!(s.pop(), Some('č'));
/// assert_eq!(s.pop(), Some('b'));
/// assert_eq!(s.pop(), Some('a'));
///
/// assert_eq!(s.pop(), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pop(&mut self) -> Option<char> {
let ch = self.chars().rev().next()?;
let newlen = self.len() - ch.len_utf8();
unsafe {
self.vec.set_len(newlen);
}
Some(ch)
}
/// Removes a [`char`] from this `String` at a byte position and returns it.
///
/// This is an *O*(*n*) operation, as it requires copying every element in the
/// buffer.
///
/// # Panics
///
/// Panics if `idx` is larger than or equal to the `String`'s length,
/// or if it does not lie on a [`char`] boundary.
///
/// # Examples
///
/// ```
/// let mut s = String::from("abç");
///
/// assert_eq!(s.remove(0), 'a');
/// assert_eq!(s.remove(1), 'ç');
/// assert_eq!(s.remove(0), 'b');
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_confusables("delete", "take")]
pub fn remove(&mut self, idx: usize) -> char {
let ch = match self[idx..].chars().next() {
Some(ch) => ch,
None => panic!("cannot remove a char from the end of a string"),
};
let next = idx + ch.len_utf8();
let len = self.len();
unsafe {
ptr::copy(self.vec.as_ptr().add(next), self.vec.as_mut_ptr().add(idx), len - next);
self.vec.set_len(len - (next - idx));
}
ch
}
/// Remove all matches of pattern `pat` in the `String`.
///
/// # Examples
///
/// ```
/// #![feature(string_remove_matches)]
/// let mut s = String::from("Trees are not green, the sky is not blue.");
/// s.remove_matches("not ");
/// assert_eq!("Trees are green, the sky is blue.", s);
/// ```
///
/// Matches will be detected and removed iteratively, so in cases where
/// patterns overlap, only the first pattern will be removed:
///
/// ```
/// #![feature(string_remove_matches)]
/// let mut s = String::from("banana");
/// s.remove_matches("ana");
/// assert_eq!("bna", s);
/// ```
#[cfg(not(no_global_oom_handling))]
#[unstable(feature = "string_remove_matches", reason = "new API", issue = "72826")]
pub fn remove_matches<'a, P>(&'a mut self, pat: P)
where
P: for<'x> Pattern<'x>,
{
use core::str::pattern::Searcher;
let rejections = {
let mut searcher = pat.into_searcher(self);
// Per Searcher::next:
//
// A Match result needs to contain the whole matched pattern,
// however Reject results may be split up into arbitrary many
// adjacent fragments. Both ranges may have zero length.
//
// In practice the implementation of Searcher::next_match tends to
// be more efficient, so we use it here and do some work to invert
// matches into rejections since that's what we want to copy below.
let mut front = 0;
let rejections: Vec<_> = from_fn(|| {
let (start, end) = searcher.next_match()?;
let prev_front = front;
front = end;
Some((prev_front, start))
})
.collect();
rejections.into_iter().chain(core::iter::once((front, self.len())))
};
let mut len = 0;
let ptr = self.vec.as_mut_ptr();
for (start, end) in rejections {
let count = end - start;
if start != len {
// SAFETY: per Searcher::next:
//
// The stream of Match and Reject values up to a Done will
// contain index ranges that are adjacent, non-overlapping,
// covering the whole haystack, and laying on utf8
// boundaries.
unsafe {
ptr::copy(ptr.add(start), ptr.add(len), count);
}
}
len += count;
}
unsafe {
self.vec.set_len(len);
}
}
/// Retains only the characters specified by the predicate.
///
/// In other words, remove all characters `c` such that `f(c)` returns `false`.
/// This method operates in place, visiting each character exactly once in the
/// original order, and preserves the order of the retained characters.
///
/// # Examples
///
/// ```
/// let mut s = String::from("f_o_ob_ar");
///
/// s.retain(|c| c != '_');
///
/// assert_eq!(s, "foobar");
/// ```
///
/// Because the elements are visited exactly once in the original order,
/// external state may be used to decide which elements to keep.
///
/// ```
/// let mut s = String::from("abcde");
/// let keep = [false, true, true, false, true];
/// let mut iter = keep.iter();
/// s.retain(|_| *iter.next().unwrap());
/// assert_eq!(s, "bce");
/// ```
#[inline]
#[stable(feature = "string_retain", since = "1.26.0")]
pub fn retain<F>(&mut self, mut f: F)
where
F: FnMut(char) -> bool,
{
struct SetLenOnDrop<'a> {
s: &'a mut String,
idx: usize,
del_bytes: usize,
}
impl<'a> Drop for SetLenOnDrop<'a> {
fn drop(&mut self) {
let new_len = self.idx - self.del_bytes;
debug_assert!(new_len <= self.s.len());
unsafe { self.s.vec.set_len(new_len) };
}
}
let len = self.len();
let mut guard = SetLenOnDrop { s: self, idx: 0, del_bytes: 0 };
while guard.idx < len {
let ch =
// SAFETY: `guard.idx` is positive-or-zero and less that len so the `get_unchecked`
// is in bound. `self` is valid UTF-8 like string and the returned slice starts at
// a unicode code point so the `Chars` always return one character.
unsafe { guard.s.get_unchecked(guard.idx..len).chars().next().unwrap_unchecked() };
let ch_len = ch.len_utf8();
if !f(ch) {
guard.del_bytes += ch_len;
} else if guard.del_bytes > 0 {
// SAFETY: `guard.idx` is in bound and `guard.del_bytes` represent the number of
// bytes that are erased from the string so the resulting `guard.idx -
// guard.del_bytes` always represent a valid unicode code point.
//
// `guard.del_bytes` >= `ch.len_utf8()`, so taking a slice with `ch.len_utf8()` len
// is safe.
ch.encode_utf8(unsafe {
crate::slice::from_raw_parts_mut(
guard.s.as_mut_ptr().add(guard.idx - guard.del_bytes),
ch.len_utf8(),
)
});
}
// Point idx to the next char
guard.idx += ch_len;
}
drop(guard);
}
/// Inserts a character into this `String` at a byte position.
///
/// This is an *O*(*n*) operation as it requires copying every element in the
/// buffer.
///
/// # Panics
///
/// Panics if `idx` is larger than the `String`'s length, or if it does not
/// lie on a [`char`] boundary.
///
/// # Examples
///
/// ```
/// let mut s = String::with_capacity(3);
///
/// s.insert(0, 'f');
/// s.insert(1, 'o');
/// s.insert(2, 'o');
///
/// assert_eq!("foo", s);
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_confusables("set")]
pub fn insert(&mut self, idx: usize, ch: char) {
assert!(self.is_char_boundary(idx));
let mut bits = [0; 4];
let bits = ch.encode_utf8(&mut bits).as_bytes();
unsafe {
self.insert_bytes(idx, bits);
}
}
#[cfg(not(no_global_oom_handling))]
unsafe fn insert_bytes(&mut self, idx: usize, bytes: &[u8]) {
let len = self.len();
let amt = bytes.len();
self.vec.reserve(amt);
unsafe {
ptr::copy(self.vec.as_ptr().add(idx), self.vec.as_mut_ptr().add(idx + amt), len - idx);
ptr::copy_nonoverlapping(bytes.as_ptr(), self.vec.as_mut_ptr().add(idx), amt);
self.vec.set_len(len + amt);
}
}
/// Inserts a string slice into this `String` at a byte position.
///
/// This is an *O*(*n*) operation as it requires copying every element in the
/// buffer.
///
/// # Panics
///
/// Panics if `idx` is larger than the `String`'s length, or if it does not
/// lie on a [`char`] boundary.
///
/// # Examples
///
/// ```
/// let mut s = String::from("bar");
///
/// s.insert_str(0, "foo");
///
/// assert_eq!("foobar", s);
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "insert_str", since = "1.16.0")]
pub fn insert_str(&mut self, idx: usize, string: &str) {
assert!(self.is_char_boundary(idx));
unsafe {
self.insert_bytes(idx, string.as_bytes());
}
}
/// Returns a mutable reference to the contents of this `String`.
///
/// # Safety
///
/// This function is unsafe because the returned `&mut Vec` allows writing
/// bytes which are not valid UTF-8. If this constraint is violated, using
/// the original `String` after dropping the `&mut Vec` may violate memory
/// safety, as the rest of the standard library assumes that `String`s are
/// valid UTF-8.
///
/// # Examples
///
/// ```
/// let mut s = String::from("hello");
///
/// unsafe {
/// let vec = s.as_mut_vec();
/// assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]);
///
/// vec.reverse();
/// }
/// assert_eq!(s, "olleh");
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8> {
&mut self.vec
}
/// Returns the length of this `String`, in bytes, not [`char`]s or
/// graphemes. In other words, it might not be what a human considers the
/// length of the string.
///
/// # Examples
///
/// ```
/// let a = String::from("foo");
/// assert_eq!(a.len(), 3);
///
/// let fancy_f = String::from("ƒoo");
/// assert_eq!(fancy_f.len(), 4);
/// assert_eq!(fancy_f.chars().count(), 3);
/// ```
#[inline]
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_confusables("length", "size")]
pub fn len(&self) -> usize {
self.vec.len()
}
/// Returns `true` if this `String` has a length of zero, and `false` otherwise.
///
/// # Examples
///
/// ```
/// let mut v = String::new();
/// assert!(v.is_empty());
///
/// v.push('a');
/// assert!(!v.is_empty());
/// ```
#[inline]
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Splits the string into two at the given byte index.
///
/// Returns a newly allocated `String`. `self` contains bytes `[0, at)`, and
/// the returned `String` contains bytes `[at, len)`. `at` must be on the
/// boundary of a UTF-8 code point.
///
/// Note that the capacity of `self` does not change.
///
/// # Panics
///
/// Panics if `at` is not on a `UTF-8` code point boundary, or if it is beyond the last
/// code point of the string.
///
/// # Examples
///
/// ```
/// # fn main() {
/// let mut hello = String::from("Hello, World!");
/// let world = hello.split_off(7);
/// assert_eq!(hello, "Hello, ");
/// assert_eq!(world, "World!");
/// # }
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "string_split_off", since = "1.16.0")]
#[must_use = "use `.truncate()` if you don't need the other half"]
pub fn split_off(&mut self, at: usize) -> String {
assert!(self.is_char_boundary(at));
let other = self.vec.split_off(at);
unsafe { String::from_utf8_unchecked(other) }
}
/// Truncates this `String`, removing all contents.
///
/// While this means the `String` will have a length of zero, it does not
/// touch its capacity.
///
/// # Examples
///
/// ```
/// let mut s = String::from("foo");
///
/// s.clear();
///
/// assert!(s.is_empty());
/// assert_eq!(0, s.len());
/// assert_eq!(3, s.capacity());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn clear(&mut self) {
self.vec.clear()
}
/// Removes the specified range from the string in bulk, returning all
/// removed characters as an iterator.
///
/// The returned iterator keeps a mutable borrow on the string to optimize
/// its implementation.
///
/// # Panics
///
/// Panics if the starting point or end point do not lie on a [`char`]
/// boundary, or if they're out of bounds.
///
/// # Leaking
///
/// If the returned iterator goes out of scope without being dropped (due to
/// [`core::mem::forget`], for example), the string may still contain a copy
/// of any drained characters, or may have lost characters arbitrarily,
/// including characters outside the range.
///
/// # Examples
///
/// ```
/// let mut s = String::from("α is alpha, β is beta");
/// let beta_offset = s.find('β').unwrap_or(s.len());
///
/// // Remove the range up until the β from the string
/// let t: String = s.drain(..beta_offset).collect();
/// assert_eq!(t, "α is alpha, ");
/// assert_eq!(s, "β is beta");
///
/// // A full range clears the string, like `clear()` does
/// s.drain(..);
/// assert_eq!(s, "");
/// ```
#[stable(feature = "drain", since = "1.6.0")]
pub fn drain<R>(&mut self, range: R) -> Drain<'_>
where
R: RangeBounds<usize>,
{
// Memory safety
//
// The String version of Drain does not have the memory safety issues
// of the vector version. The data is just plain bytes.
// Because the range removal happens in Drop, if the Drain iterator is leaked,
// the removal will not happen.
let Range { start, end } = slice::range(range, ..self.len());
assert!(self.is_char_boundary(start));
assert!(self.is_char_boundary(end));
// Take out two simultaneous borrows. The &mut String won't be accessed
// until iteration is over, in Drop.
let self_ptr = self as *mut _;
// SAFETY: `slice::range` and `is_char_boundary` do the appropriate bounds checks.
let chars_iter = unsafe { self.get_unchecked(start..end) }.chars();
Drain { start, end, iter: chars_iter, string: self_ptr }
}
/// Removes the specified range in the string,
/// and replaces it with the given string.
/// The given string doesn't need to be the same length as the range.
///
/// # Panics
///
/// Panics if the starting point or end point do not lie on a [`char`]
/// boundary, or if they're out of bounds.
///
/// # Examples
///
/// ```
/// let mut s = String::from("α is alpha, β is beta");
/// let beta_offset = s.find('β').unwrap_or(s.len());
///
/// // Replace the range up until the β from the string
/// s.replace_range(..beta_offset, "Α is capital alpha; ");
/// assert_eq!(s, "Α is capital alpha; β is beta");
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "splice", since = "1.27.0")]
pub fn replace_range<R>(&mut self, range: R, replace_with: &str)
where
R: RangeBounds<usize>,
{
// Memory safety
//
// Replace_range does not have the memory safety issues of a vector Splice.
// of the vector version. The data is just plain bytes.
// WARNING: Inlining this variable would be unsound (#81138)
let start = range.start_bound();
match start {
Included(&n) => assert!(self.is_char_boundary(n)),
Excluded(&n) => assert!(self.is_char_boundary(n + 1)),
Unbounded => {}
};
// WARNING: Inlining this variable would be unsound (#81138)
let end = range.end_bound();
match end {
Included(&n) => assert!(self.is_char_boundary(n + 1)),
Excluded(&n) => assert!(self.is_char_boundary(n)),
Unbounded => {}
};
// Using `range` again would be unsound (#81138)
// We assume the bounds reported by `range` remain the same, but
// an adversarial implementation could change between calls
unsafe { self.as_mut_vec() }.splice((start, end), replace_with.bytes());
}
/// Converts this `String` into a <code>[Box]<[str]></code>.
///
/// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
/// Note that this call may reallocate and copy the bytes of the string.
///
/// [`shrink_to_fit`]: String::shrink_to_fit
/// [str]: prim@str "str"
///
/// # Examples
///
/// ```
/// let s = String::from("hello");
///
/// let b = s.into_boxed_str();
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "box_str", since = "1.4.0")]
#[must_use = "`self` will be dropped if the result is not used"]
#[inline]
pub fn into_boxed_str(self) -> Box<str> {
let slice = self.vec.into_boxed_slice();
unsafe { from_boxed_utf8_unchecked(slice) }
}
/// Consumes and leaks the `String`, returning a mutable reference to the contents,
/// `&'a mut str`.
///
/// The caller has free choice over the returned lifetime, including `'static`. Indeed,
/// this function is ideally used for data that lives for the remainder of the program's life,
/// as dropping the returned reference will cause a memory leak.
///
/// It does not reallocate or shrink the `String`, so the leaked allocation may include unused
/// capacity that is not part of the returned slice. If you want to discard excess capacity,
/// call [`into_boxed_str`], and then [`Box::leak`] instead. However, keep in mind that
/// trimming the capacity may result in a reallocation and copy.
///
/// [`into_boxed_str`]: Self::into_boxed_str
///
/// # Examples
///
/// ```
/// let x = String::from("bucket");
/// let static_ref: &'static mut str = x.leak();
/// assert_eq!(static_ref, "bucket");
/// ```
#[stable(feature = "string_leak", since = "1.72.0")]
#[inline]
pub fn leak<'a>(self) -> &'a mut str {
let slice = self.vec.leak();
unsafe { from_utf8_unchecked_mut(slice) }
}
}
impl FromUtf8Error {
/// Returns a slice of [`u8`]s bytes that were attempted to convert to a `String`.
///
/// # Examples
///
/// ```
/// // some invalid bytes, in a vector
/// let bytes = vec![0, 159];
///
/// let value = String::from_utf8(bytes);
///
/// assert_eq!(&[0, 159], value.unwrap_err().as_bytes());
/// ```
#[must_use]
#[stable(feature = "from_utf8_error_as_bytes", since = "1.26.0")]
pub fn as_bytes(&self) -> &[u8] {
&self.bytes[..]
}
/// Returns the bytes that were attempted to convert to a `String`.
///
/// This method is carefully constructed to avoid allocation. It will
/// consume the error, moving out the bytes, so that a copy of the bytes
/// does not need to be made.
///
/// # Examples
///
/// ```
/// // some invalid bytes, in a vector
/// let bytes = vec![0, 159];
///
/// let value = String::from_utf8(bytes);
///
/// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
/// ```
#[must_use = "`self` will be dropped if the result is not used"]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn into_bytes(self) -> Vec<u8> {
self.bytes
}
/// Fetch a `Utf8Error` to get more details about the conversion failure.
///
/// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
/// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
/// an analogue to `FromUtf8Error`. See its documentation for more details
/// on using it.
///
/// [`std::str`]: core::str "std::str"
/// [`&str`]: prim@str "&str"
///
/// # Examples
///
/// ```
/// // some invalid bytes, in a vector
/// let bytes = vec![0, 159];
///
/// let error = String::from_utf8(bytes).unwrap_err().utf8_error();
///
/// // the first byte is invalid here
/// assert_eq!(1, error.valid_up_to());
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn utf8_error(&self) -> Utf8Error {
self.error
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for FromUtf8Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&self.error, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for FromUtf16Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt("invalid utf-16: lone surrogate found", f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Error for FromUtf8Error {
#[allow(deprecated)]
fn description(&self) -> &str {
"invalid utf-8"
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Error for FromUtf16Error {
#[allow(deprecated)]
fn description(&self) -> &str {
"invalid utf-16"
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl Clone for String {
fn clone(&self) -> Self {
String { vec: self.vec.clone() }
}
/// Clones the contents of `source` into `self`.
///
/// This method is preferred over simply assigning `source.clone()` to `self`,
/// as it avoids reallocation if possible.
fn clone_from(&mut self, source: &Self) {
self.vec.clone_from(&source.vec);
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl FromIterator<char> for String {
fn from_iter<I: IntoIterator<Item = char>>(iter: I) -> String {
let mut buf = String::new();
buf.extend(iter);
buf
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "string_from_iter_by_ref", since = "1.17.0")]
impl<'a> FromIterator<&'a char> for String {
fn from_iter<I: IntoIterator<Item = &'a char>>(iter: I) -> String {
let mut buf = String::new();
buf.extend(iter);
buf
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> FromIterator<&'a str> for String {
fn from_iter<I: IntoIterator<Item = &'a str>>(iter: I) -> String {
let mut buf = String::new();
buf.extend(iter);
buf
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "extend_string", since = "1.4.0")]
impl FromIterator<String> for String {
fn from_iter<I: IntoIterator<Item = String>>(iter: I) -> String {
let mut iterator = iter.into_iter();
// Because we're iterating over `String`s, we can avoid at least
// one allocation by getting the first string from the iterator
// and appending to it all the subsequent strings.
match iterator.next() {
None => String::new(),
Some(mut buf) => {
buf.extend(iterator);
buf
}
}
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "box_str2", since = "1.45.0")]
impl<A: Allocator> FromIterator<Box<str, A>> for String {
fn from_iter<I: IntoIterator<Item = Box<str, A>>>(iter: I) -> String {
let mut buf = String::new();
buf.extend(iter);
buf
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "herd_cows", since = "1.19.0")]
impl<'a> FromIterator<Cow<'a, str>> for String {
fn from_iter<I: IntoIterator<Item = Cow<'a, str>>>(iter: I) -> String {
let mut iterator = iter.into_iter();
// Because we're iterating over CoWs, we can (potentially) avoid at least
// one allocation by getting the first item and appending to it all the
// subsequent items.
match iterator.next() {
None => String::new(),
Some(cow) => {
let mut buf = cow.into_owned();
buf.extend(iterator);
buf
}
}
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl Extend<char> for String {
fn extend<I: IntoIterator<Item = char>>(&mut self, iter: I) {
let iterator = iter.into_iter();
let (lower_bound, _) = iterator.size_hint();
self.reserve(lower_bound);
iterator.for_each(move |c| self.push(c));
}
#[inline]
fn extend_one(&mut self, c: char) {
self.push(c);
}
#[inline]
fn extend_reserve(&mut self, additional: usize) {
self.reserve(additional);
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "extend_ref", since = "1.2.0")]
impl<'a> Extend<&'a char> for String {
fn extend<I: IntoIterator<Item = &'a char>>(&mut self, iter: I) {
self.extend(iter.into_iter().cloned());
}
#[inline]
fn extend_one(&mut self, &c: &'a char) {
self.push(c);
}
#[inline]
fn extend_reserve(&mut self, additional: usize) {
self.reserve(additional);
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Extend<&'a str> for String {
fn extend<I: IntoIterator<Item = &'a str>>(&mut self, iter: I) {
iter.into_iter().for_each(move |s| self.push_str(s));
}
#[inline]
fn extend_one(&mut self, s: &'a str) {
self.push_str(s);
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "box_str2", since = "1.45.0")]
impl<A: Allocator> Extend<Box<str, A>> for String {
fn extend<I: IntoIterator<Item = Box<str, A>>>(&mut self, iter: I) {
iter.into_iter().for_each(move |s| self.push_str(&s));
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "extend_string", since = "1.4.0")]
impl Extend<String> for String {
fn extend<I: IntoIterator<Item = String>>(&mut self, iter: I) {
iter.into_iter().for_each(move |s| self.push_str(&s));
}
#[inline]
fn extend_one(&mut self, s: String) {
self.push_str(&s);
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "herd_cows", since = "1.19.0")]
impl<'a> Extend<Cow<'a, str>> for String {
fn extend<I: IntoIterator<Item = Cow<'a, str>>>(&mut self, iter: I) {
iter.into_iter().for_each(move |s| self.push_str(&s));
}
#[inline]
fn extend_one(&mut self, s: Cow<'a, str>) {
self.push_str(&s);
}
}
/// A convenience impl that delegates to the impl for `&str`.
///
/// # Examples
///
/// ```
/// assert_eq!(String::from("Hello world").find("world"), Some(6));
/// ```
#[unstable(
feature = "pattern",
reason = "API not fully fleshed out and ready to be stabilized",
issue = "27721"
)]
impl<'a, 'b> Pattern<'a> for &'b String {
type Searcher = <&'b str as Pattern<'a>>::Searcher;
fn into_searcher(self, haystack: &'a str) -> <&'b str as Pattern<'a>>::Searcher {
self[..].into_searcher(haystack)
}
#[inline]
fn is_contained_in(self, haystack: &'a str) -> bool {
self[..].is_contained_in(haystack)
}
#[inline]
fn is_prefix_of(self, haystack: &'a str) -> bool {
self[..].is_prefix_of(haystack)
}
#[inline]
fn strip_prefix_of(self, haystack: &'a str) -> Option<&'a str> {
self[..].strip_prefix_of(haystack)
}
#[inline]
fn is_suffix_of(self, haystack: &'a str) -> bool {
self[..].is_suffix_of(haystack)
}
#[inline]
fn strip_suffix_of(self, haystack: &'a str) -> Option<&'a str> {
self[..].strip_suffix_of(haystack)
}
}
macro_rules! impl_eq {
($lhs:ty, $rhs: ty) => {
#[stable(feature = "rust1", since = "1.0.0")]
#[allow(unused_lifetimes)]
impl<'a, 'b> PartialEq<$rhs> for $lhs {
#[inline]
fn eq(&self, other: &$rhs) -> bool {
PartialEq::eq(&self[..], &other[..])
}
#[inline]
fn ne(&self, other: &$rhs) -> bool {
PartialEq::ne(&self[..], &other[..])
}
}
#[stable(feature = "rust1", since = "1.0.0")]
#[allow(unused_lifetimes)]
impl<'a, 'b> PartialEq<$lhs> for $rhs {
#[inline]
fn eq(&self, other: &$lhs) -> bool {
PartialEq::eq(&self[..], &other[..])
}
#[inline]
fn ne(&self, other: &$lhs) -> bool {
PartialEq::ne(&self[..], &other[..])
}
}
};
}
impl_eq! { String, str }
impl_eq! { String, &'a str }
#[cfg(not(no_global_oom_handling))]
impl_eq! { Cow<'a, str>, str }
#[cfg(not(no_global_oom_handling))]
impl_eq! { Cow<'a, str>, &'b str }
#[cfg(not(no_global_oom_handling))]
impl_eq! { Cow<'a, str>, String }
#[stable(feature = "rust1", since = "1.0.0")]
impl Default for String {
/// Creates an empty `String`.
#[inline]
fn default() -> String {
String::new()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for String {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for String {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl hash::Hash for String {
#[inline]
fn hash<H: hash::Hasher>(&self, hasher: &mut H) {
(**self).hash(hasher)
}
}
/// Implements the `+` operator for concatenating two strings.
///
/// This consumes the `String` on the left-hand side and re-uses its buffer (growing it if
/// necessary). This is done to avoid allocating a new `String` and copying the entire contents on
/// every operation, which would lead to *O*(*n*^2) running time when building an *n*-byte string by
/// repeated concatenation.
///
/// The string on the right-hand side is only borrowed; its contents are copied into the returned
/// `String`.
///
/// # Examples
///
/// Concatenating two `String`s takes the first by value and borrows the second:
///
/// ```
/// let a = String::from("hello");
/// let b = String::from(" world");
/// let c = a + &b;
/// // `a` is moved and can no longer be used here.
/// ```
///
/// If you want to keep using the first `String`, you can clone it and append to the clone instead:
///
/// ```
/// let a = String::from("hello");
/// let b = String::from(" world");
/// let c = a.clone() + &b;
/// // `a` is still valid here.
/// ```
///
/// Concatenating `&str` slices can be done by converting the first to a `String`:
///
/// ```
/// let a = "hello";
/// let b = " world";
/// let c = a.to_string() + b;
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl Add<&str> for String {
type Output = String;
#[inline]
fn add(mut self, other: &str) -> String {
self.push_str(other);
self
}
}
/// Implements the `+=` operator for appending to a `String`.
///
/// This has the same behavior as the [`push_str`][String::push_str] method.
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "stringaddassign", since = "1.12.0")]
impl AddAssign<&str> for String {
#[inline]
fn add_assign(&mut self, other: &str) {
self.push_str(other);
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I> ops::Index<I> for String
where
I: slice::SliceIndex<str>,
{
type Output = I::Output;
#[inline]
fn index(&self, index: I) -> &I::Output {
index.index(self.as_str())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I> ops::IndexMut<I> for String
where
I: slice::SliceIndex<str>,
{
#[inline]
fn index_mut(&mut self, index: I) -> &mut I::Output {
index.index_mut(self.as_mut_str())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl ops::Deref for String {
type Target = str;
#[inline]
fn deref(&self) -> &str {
unsafe { str::from_utf8_unchecked(&self.vec) }
}
}
#[unstable(feature = "deref_pure_trait", issue = "87121")]
unsafe impl ops::DerefPure for String {}
#[stable(feature = "derefmut_for_string", since = "1.3.0")]
impl ops::DerefMut for String {
#[inline]
fn deref_mut(&mut self) -> &mut str {
unsafe { str::from_utf8_unchecked_mut(&mut *self.vec) }
}
}
/// A type alias for [`Infallible`].
///
/// This alias exists for backwards compatibility, and may be eventually deprecated.
///
/// [`Infallible`]: core::convert::Infallible "convert::Infallible"
#[stable(feature = "str_parse_error", since = "1.5.0")]
pub type ParseError = core::convert::Infallible;
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl FromStr for String {
type Err = core::convert::Infallible;
#[inline]
fn from_str(s: &str) -> Result<String, Self::Err> {
Ok(String::from(s))
}
}
/// A trait for converting a value to a `String`.
///
/// This trait is automatically implemented for any type which implements the
/// [`Display`] trait. As such, `ToString` shouldn't be implemented directly:
/// [`Display`] should be implemented instead, and you get the `ToString`
/// implementation for free.
///
/// [`Display`]: fmt::Display
#[cfg_attr(not(test), rustc_diagnostic_item = "ToString")]
#[stable(feature = "rust1", since = "1.0.0")]
pub trait ToString {
/// Converts the given value to a `String`.
///
/// # Examples
///
/// ```
/// let i = 5;
/// let five = String::from("5");
///
/// assert_eq!(five, i.to_string());
/// ```
#[rustc_conversion_suggestion]
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "to_string_method")]
fn to_string(&self) -> String;
}
/// # Panics
///
/// In this implementation, the `to_string` method panics
/// if the `Display` implementation returns an error.
/// This indicates an incorrect `Display` implementation
/// since `fmt::Write for String` never returns an error itself.
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Display + ?Sized> ToString for T {
// A common guideline is to not inline generic functions. However,
// removing `#[inline]` from this method causes non-negligible regressions.
// See <https://github.com/rust-lang/rust/pull/74852>, the last attempt
// to try to remove it.
#[inline]
default fn to_string(&self) -> String {
let mut buf = String::new();
let mut formatter = core::fmt::Formatter::new(&mut buf);
// Bypass format_args!() to avoid write_str with zero-length strs
fmt::Display::fmt(self, &mut formatter)
.expect("a Display implementation returned an error unexpectedly");
buf
}
}
#[doc(hidden)]
#[cfg(not(no_global_oom_handling))]
#[unstable(feature = "ascii_char", issue = "110998")]
impl ToString for core::ascii::Char {
#[inline]
fn to_string(&self) -> String {
self.as_str().to_owned()
}
}
#[doc(hidden)]
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "char_to_string_specialization", since = "1.46.0")]
impl ToString for char {
#[inline]
fn to_string(&self) -> String {
String::from(self.encode_utf8(&mut [0; 4]))
}
}
#[doc(hidden)]
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "bool_to_string_specialization", since = "1.68.0")]
impl ToString for bool {
#[inline]
fn to_string(&self) -> String {
String::from(if *self { "true" } else { "false" })
}
}
#[doc(hidden)]
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "u8_to_string_specialization", since = "1.54.0")]
impl ToString for u8 {
#[inline]
fn to_string(&self) -> String {
let mut buf = String::with_capacity(3);
let mut n = *self;
if n >= 10 {
if n >= 100 {
buf.push((b'0' + n / 100) as char);
n %= 100;
}
buf.push((b'0' + n / 10) as char);
n %= 10;
}
buf.push((b'0' + n) as char);
buf
}
}
#[doc(hidden)]
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "i8_to_string_specialization", since = "1.54.0")]
impl ToString for i8 {
#[inline]
fn to_string(&self) -> String {
let mut buf = String::with_capacity(4);
if self.is_negative() {
buf.push('-');
}
let mut n = self.unsigned_abs();
if n >= 10 {
if n >= 100 {
buf.push('1');
n -= 100;
}
buf.push((b'0' + n / 10) as char);
n %= 10;
}
buf.push((b'0' + n) as char);
buf
}
}
#[doc(hidden)]
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "str_to_string_specialization", since = "1.9.0")]
impl ToString for str {
#[inline]
fn to_string(&self) -> String {
String::from(self)
}
}
#[doc(hidden)]
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "cow_str_to_string_specialization", since = "1.17.0")]
impl ToString for Cow<'_, str> {
#[inline]
fn to_string(&self) -> String {
self[..].to_owned()
}
}
#[doc(hidden)]
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "string_to_string_specialization", since = "1.17.0")]
impl ToString for String {
#[inline]
fn to_string(&self) -> String {
self.to_owned()
}
}
#[doc(hidden)]
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "fmt_arguments_to_string_specialization", since = "1.71.0")]
impl ToString for fmt::Arguments<'_> {
#[inline]
fn to_string(&self) -> String {
crate::fmt::format(*self)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl AsRef<str> for String {
#[inline]
fn as_ref(&self) -> &str {
self
}
}
#[stable(feature = "string_as_mut", since = "1.43.0")]
impl AsMut<str> for String {
#[inline]
fn as_mut(&mut self) -> &mut str {
self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl AsRef<[u8]> for String {
#[inline]
fn as_ref(&self) -> &[u8] {
self.as_bytes()
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl From<&str> for String {
/// Converts a `&str` into a [`String`].
///
/// The result is allocated on the heap.
#[inline]
fn from(s: &str) -> String {
s.to_owned()
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "from_mut_str_for_string", since = "1.44.0")]
impl From<&mut str> for String {
/// Converts a `&mut str` into a [`String`].
///
/// The result is allocated on the heap.
#[inline]
fn from(s: &mut str) -> String {
s.to_owned()
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "from_ref_string", since = "1.35.0")]
impl From<&String> for String {
/// Converts a `&String` into a [`String`].
///
/// This clones `s` and returns the clone.
#[inline]
fn from(s: &String) -> String {
s.clone()
}
}
// note: test pulls in std, which causes errors here
#[cfg(not(test))]
#[stable(feature = "string_from_box", since = "1.18.0")]
impl From<Box<str>> for String {
/// Converts the given boxed `str` slice to a [`String`].
/// It is notable that the `str` slice is owned.
///
/// # Examples
///
/// ```
/// let s1: String = String::from("hello world");
/// let s2: Box<str> = s1.into_boxed_str();
/// let s3: String = String::from(s2);
///
/// assert_eq!("hello world", s3)
/// ```
fn from(s: Box<str>) -> String {
s.into_string()
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "box_from_str", since = "1.20.0")]
impl From<String> for Box<str> {
/// Converts the given [`String`] to a boxed `str` slice that is owned.
///
/// # Examples
///
/// ```
/// let s1: String = String::from("hello world");
/// let s2: Box<str> = Box::from(s1);
/// let s3: String = String::from(s2);
///
/// assert_eq!("hello world", s3)
/// ```
fn from(s: String) -> Box<str> {
s.into_boxed_str()
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "string_from_cow_str", since = "1.14.0")]
impl<'a> From<Cow<'a, str>> for String {
/// Converts a clone-on-write string to an owned
/// instance of [`String`].
///
/// This extracts the owned string,
/// clones the string if it is not already owned.
///
/// # Example
///
/// ```
/// # use std::borrow::Cow;
/// // If the string is not owned...
/// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
/// // It will allocate on the heap and copy the string.
/// let owned: String = String::from(cow);
/// assert_eq!(&owned[..], "eggplant");
/// ```
fn from(s: Cow<'a, str>) -> String {
s.into_owned()
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> From<&'a str> for Cow<'a, str> {
/// Converts a string slice into a [`Borrowed`] variant.
/// No heap allocation is performed, and the string
/// is not copied.
///
/// # Example
///
/// ```
/// # use std::borrow::Cow;
/// assert_eq!(Cow::from("eggplant"), Cow::Borrowed("eggplant"));
/// ```
///
/// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
#[inline]
fn from(s: &'a str) -> Cow<'a, str> {
Cow::Borrowed(s)
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> From<String> for Cow<'a, str> {
/// Converts a [`String`] into an [`Owned`] variant.
/// No heap allocation is performed, and the string
/// is not copied.
///
/// # Example
///
/// ```
/// # use std::borrow::Cow;
/// let s = "eggplant".to_string();
/// let s2 = "eggplant".to_string();
/// assert_eq!(Cow::from(s), Cow::<'static, str>::Owned(s2));
/// ```
///
/// [`Owned`]: crate::borrow::Cow::Owned "borrow::Cow::Owned"
#[inline]
fn from(s: String) -> Cow<'a, str> {
Cow::Owned(s)
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "cow_from_string_ref", since = "1.28.0")]
impl<'a> From<&'a String> for Cow<'a, str> {
/// Converts a [`String`] reference into a [`Borrowed`] variant.
/// No heap allocation is performed, and the string
/// is not copied.
///
/// # Example
///
/// ```
/// # use std::borrow::Cow;
/// let s = "eggplant".to_string();
/// assert_eq!(Cow::from(&s), Cow::Borrowed("eggplant"));
/// ```
///
/// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
#[inline]
fn from(s: &'a String) -> Cow<'a, str> {
Cow::Borrowed(s.as_str())
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
impl<'a> FromIterator<char> for Cow<'a, str> {
fn from_iter<I: IntoIterator<Item = char>>(it: I) -> Cow<'a, str> {
Cow::Owned(FromIterator::from_iter(it))
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
impl<'a, 'b> FromIterator<&'b str> for Cow<'a, str> {
fn from_iter<I: IntoIterator<Item = &'b str>>(it: I) -> Cow<'a, str> {
Cow::Owned(FromIterator::from_iter(it))
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
impl<'a> FromIterator<String> for Cow<'a, str> {
fn from_iter<I: IntoIterator<Item = String>>(it: I) -> Cow<'a, str> {
Cow::Owned(FromIterator::from_iter(it))
}
}
#[stable(feature = "from_string_for_vec_u8", since = "1.14.0")]
impl From<String> for Vec<u8> {
/// Converts the given [`String`] to a vector [`Vec`] that holds values of type [`u8`].
///
/// # Examples
///
/// ```
/// let s1 = String::from("hello world");
/// let v1 = Vec::from(s1);
///
/// for b in v1 {
/// println!("{b}");
/// }
/// ```
fn from(string: String) -> Vec<u8> {
string.into_bytes()
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Write for String {
#[inline]
fn write_str(&mut self, s: &str) -> fmt::Result {
self.push_str(s);
Ok(())
}
#[inline]
fn write_char(&mut self, c: char) -> fmt::Result {
self.push(c);
Ok(())
}
}
/// A draining iterator for `String`.
///
/// This struct is created by the [`drain`] method on [`String`]. See its
/// documentation for more.
///
/// [`drain`]: String::drain
#[stable(feature = "drain", since = "1.6.0")]
pub struct Drain<'a> {
/// Will be used as &'a mut String in the destructor
string: *mut String,
/// Start of part to remove
start: usize,
/// End of part to remove
end: usize,
/// Current remaining range to remove
iter: Chars<'a>,
}
#[stable(feature = "collection_debug", since = "1.17.0")]
impl fmt::Debug for Drain<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Drain").field(&self.as_str()).finish()
}
}
#[stable(feature = "drain", since = "1.6.0")]
unsafe impl Sync for Drain<'_> {}
#[stable(feature = "drain", since = "1.6.0")]
unsafe impl Send for Drain<'_> {}
#[stable(feature = "drain", since = "1.6.0")]
impl Drop for Drain<'_> {
fn drop(&mut self) {
unsafe {
// Use Vec::drain. "Reaffirm" the bounds checks to avoid
// panic code being inserted again.
let self_vec = (*self.string).as_mut_vec();
if self.start <= self.end && self.end <= self_vec.len() {
self_vec.drain(self.start..self.end);
}
}
}
}
impl<'a> Drain<'a> {
/// Returns the remaining (sub)string of this iterator as a slice.
///
/// # Examples
///
/// ```
/// let mut s = String::from("abc");
/// let mut drain = s.drain(..);
/// assert_eq!(drain.as_str(), "abc");
/// let _ = drain.next().unwrap();
/// assert_eq!(drain.as_str(), "bc");
/// ```
#[must_use]
#[stable(feature = "string_drain_as_str", since = "1.55.0")]
pub fn as_str(&self) -> &str {
self.iter.as_str()
}
}
#[stable(feature = "string_drain_as_str", since = "1.55.0")]
impl<'a> AsRef<str> for Drain<'a> {
fn as_ref(&self) -> &str {
self.as_str()
}
}
#[stable(feature = "string_drain_as_str", since = "1.55.0")]
impl<'a> AsRef<[u8]> for Drain<'a> {
fn as_ref(&self) -> &[u8] {
self.as_str().as_bytes()
}
}
#[stable(feature = "drain", since = "1.6.0")]
impl Iterator for Drain<'_> {
type Item = char;
#[inline]
fn next(&mut self) -> Option<char> {
self.iter.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
#[inline]
fn last(mut self) -> Option<char> {
self.next_back()
}
}
#[stable(feature = "drain", since = "1.6.0")]
impl DoubleEndedIterator for Drain<'_> {
#[inline]
fn next_back(&mut self) -> Option<char> {
self.iter.next_back()
}
}
#[stable(feature = "fused", since = "1.26.0")]
impl FusedIterator for Drain<'_> {}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "from_char_for_string", since = "1.46.0")]
impl From<char> for String {
/// Allocates an owned [`String`] from a single character.
///
/// # Example
/// ```rust
/// let c: char = 'a';
/// let s: String = String::from(c);
/// assert_eq!("a", &s[..]);
/// ```
#[inline]
fn from(c: char) -> Self {
c.to_string()
}
}