rust/library/core/src/num/f32.rs

1522 lines
57 KiB
Rust
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

//! Constants for the `f32` single-precision floating point type.
//!
//! *[See also the `f32` primitive type][f32].*
//!
//! Mathematically significant numbers are provided in the `consts` sub-module.
//!
//! For the constants defined directly in this module
//! (as distinct from those defined in the `consts` sub-module),
//! new code should instead use the associated constants
//! defined directly on the `f32` type.
#![stable(feature = "rust1", since = "1.0.0")]
use crate::convert::FloatToInt;
#[cfg(not(test))]
use crate::intrinsics;
use crate::mem;
use crate::num::FpCategory;
/// The radix or base of the internal representation of `f32`.
/// Use [`f32::RADIX`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let r = std::f32::RADIX;
///
/// // intended way
/// let r = f32::RADIX;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `RADIX` associated constant on `f32`")]
#[rustc_diagnostic_item = "f32_legacy_const_radix"]
pub const RADIX: u32 = f32::RADIX;
/// Number of significant digits in base 2.
/// Use [`f32::MANTISSA_DIGITS`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let d = std::f32::MANTISSA_DIGITS;
///
/// // intended way
/// let d = f32::MANTISSA_DIGITS;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(
since = "TBD",
note = "replaced by the `MANTISSA_DIGITS` associated constant on `f32`"
)]
#[rustc_diagnostic_item = "f32_legacy_const_mantissa_dig"]
pub const MANTISSA_DIGITS: u32 = f32::MANTISSA_DIGITS;
/// Approximate number of significant digits in base 10.
/// Use [`f32::DIGITS`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let d = std::f32::DIGITS;
///
/// // intended way
/// let d = f32::DIGITS;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `DIGITS` associated constant on `f32`")]
#[rustc_diagnostic_item = "f32_legacy_const_digits"]
pub const DIGITS: u32 = f32::DIGITS;
/// [Machine epsilon] value for `f32`.
/// Use [`f32::EPSILON`] instead.
///
/// This is the difference between `1.0` and the next larger representable number.
///
/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let e = std::f32::EPSILON;
///
/// // intended way
/// let e = f32::EPSILON;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `EPSILON` associated constant on `f32`")]
#[rustc_diagnostic_item = "f32_legacy_const_epsilon"]
pub const EPSILON: f32 = f32::EPSILON;
/// Smallest finite `f32` value.
/// Use [`f32::MIN`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let min = std::f32::MIN;
///
/// // intended way
/// let min = f32::MIN;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on `f32`")]
#[rustc_diagnostic_item = "f32_legacy_const_min"]
pub const MIN: f32 = f32::MIN;
/// Smallest positive normal `f32` value.
/// Use [`f32::MIN_POSITIVE`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let min = std::f32::MIN_POSITIVE;
///
/// // intended way
/// let min = f32::MIN_POSITIVE;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `MIN_POSITIVE` associated constant on `f32`")]
#[rustc_diagnostic_item = "f32_legacy_const_min_positive"]
pub const MIN_POSITIVE: f32 = f32::MIN_POSITIVE;
/// Largest finite `f32` value.
/// Use [`f32::MAX`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let max = std::f32::MAX;
///
/// // intended way
/// let max = f32::MAX;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on `f32`")]
#[rustc_diagnostic_item = "f32_legacy_const_max"]
pub const MAX: f32 = f32::MAX;
/// One greater than the minimum possible normal power of 2 exponent.
/// Use [`f32::MIN_EXP`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let min = std::f32::MIN_EXP;
///
/// // intended way
/// let min = f32::MIN_EXP;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `MIN_EXP` associated constant on `f32`")]
#[rustc_diagnostic_item = "f32_legacy_const_min_exp"]
pub const MIN_EXP: i32 = f32::MIN_EXP;
/// Maximum possible power of 2 exponent.
/// Use [`f32::MAX_EXP`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let max = std::f32::MAX_EXP;
///
/// // intended way
/// let max = f32::MAX_EXP;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `MAX_EXP` associated constant on `f32`")]
#[rustc_diagnostic_item = "f32_legacy_const_max_exp"]
pub const MAX_EXP: i32 = f32::MAX_EXP;
/// Minimum possible normal power of 10 exponent.
/// Use [`f32::MIN_10_EXP`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let min = std::f32::MIN_10_EXP;
///
/// // intended way
/// let min = f32::MIN_10_EXP;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `MIN_10_EXP` associated constant on `f32`")]
#[rustc_diagnostic_item = "f32_legacy_const_min_10_exp"]
pub const MIN_10_EXP: i32 = f32::MIN_10_EXP;
/// Maximum possible power of 10 exponent.
/// Use [`f32::MAX_10_EXP`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let max = std::f32::MAX_10_EXP;
///
/// // intended way
/// let max = f32::MAX_10_EXP;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `MAX_10_EXP` associated constant on `f32`")]
#[rustc_diagnostic_item = "f32_legacy_const_max_10_exp"]
pub const MAX_10_EXP: i32 = f32::MAX_10_EXP;
/// Not a Number (NaN).
/// Use [`f32::NAN`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let nan = std::f32::NAN;
///
/// // intended way
/// let nan = f32::NAN;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `NAN` associated constant on `f32`")]
#[rustc_diagnostic_item = "f32_legacy_const_nan"]
pub const NAN: f32 = f32::NAN;
/// Infinity (∞).
/// Use [`f32::INFINITY`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let inf = std::f32::INFINITY;
///
/// // intended way
/// let inf = f32::INFINITY;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `INFINITY` associated constant on `f32`")]
#[rustc_diagnostic_item = "f32_legacy_const_infinity"]
pub const INFINITY: f32 = f32::INFINITY;
/// Negative infinity (−∞).
/// Use [`f32::NEG_INFINITY`] instead.
///
/// # Examples
///
/// ```rust
/// // deprecated way
/// # #[allow(deprecated, deprecated_in_future)]
/// let ninf = std::f32::NEG_INFINITY;
///
/// // intended way
/// let ninf = f32::NEG_INFINITY;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "TBD", note = "replaced by the `NEG_INFINITY` associated constant on `f32`")]
#[rustc_diagnostic_item = "f32_legacy_const_neg_infinity"]
pub const NEG_INFINITY: f32 = f32::NEG_INFINITY;
/// Basic mathematical constants.
#[stable(feature = "rust1", since = "1.0.0")]
pub mod consts {
// FIXME: replace with mathematical constants from cmath.
/// Archimedes' constant (π)
#[stable(feature = "rust1", since = "1.0.0")]
pub const PI: f32 = 3.14159265358979323846264338327950288_f32;
/// The full circle constant (τ)
///
/// Equal to 2π.
#[stable(feature = "tau_constant", since = "1.47.0")]
pub const TAU: f32 = 6.28318530717958647692528676655900577_f32;
/// The golden ratio (φ)
#[unstable(feature = "more_float_constants", issue = "103883")]
pub const PHI: f32 = 1.618033988749894848204586834365638118_f32;
/// The Euler-Mascheroni constant (γ)
#[unstable(feature = "more_float_constants", issue = "103883")]
pub const EGAMMA: f32 = 0.577215664901532860606512090082402431_f32;
/// π/2
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_PI_2: f32 = 1.57079632679489661923132169163975144_f32;
/// π/3
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_PI_3: f32 = 1.04719755119659774615421446109316763_f32;
/// π/4
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_PI_4: f32 = 0.785398163397448309615660845819875721_f32;
/// π/6
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_PI_6: f32 = 0.52359877559829887307710723054658381_f32;
/// π/8
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_PI_8: f32 = 0.39269908169872415480783042290993786_f32;
/// 1/π
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_1_PI: f32 = 0.318309886183790671537767526745028724_f32;
/// 1/sqrt(π)
#[unstable(feature = "more_float_constants", issue = "103883")]
pub const FRAC_1_SQRT_PI: f32 = 0.564189583547756286948079451560772586_f32;
/// 2/π
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_2_PI: f32 = 0.636619772367581343075535053490057448_f32;
/// 2/sqrt(π)
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_2_SQRT_PI: f32 = 1.12837916709551257389615890312154517_f32;
/// sqrt(2)
#[stable(feature = "rust1", since = "1.0.0")]
pub const SQRT_2: f32 = 1.41421356237309504880168872420969808_f32;
/// 1/sqrt(2)
#[stable(feature = "rust1", since = "1.0.0")]
pub const FRAC_1_SQRT_2: f32 = 0.707106781186547524400844362104849039_f32;
/// sqrt(3)
#[unstable(feature = "more_float_constants", issue = "103883")]
pub const SQRT_3: f32 = 1.732050807568877293527446341505872367_f32;
/// 1/sqrt(3)
#[unstable(feature = "more_float_constants", issue = "103883")]
pub const FRAC_1_SQRT_3: f32 = 0.577350269189625764509148780501957456_f32;
/// Euler's number (e)
#[stable(feature = "rust1", since = "1.0.0")]
pub const E: f32 = 2.71828182845904523536028747135266250_f32;
/// log<sub>2</sub>(e)
#[stable(feature = "rust1", since = "1.0.0")]
pub const LOG2_E: f32 = 1.44269504088896340735992468100189214_f32;
/// log<sub>2</sub>(10)
#[stable(feature = "extra_log_consts", since = "1.43.0")]
pub const LOG2_10: f32 = 3.32192809488736234787031942948939018_f32;
/// log<sub>10</sub>(e)
#[stable(feature = "rust1", since = "1.0.0")]
pub const LOG10_E: f32 = 0.434294481903251827651128918916605082_f32;
/// log<sub>10</sub>(2)
#[stable(feature = "extra_log_consts", since = "1.43.0")]
pub const LOG10_2: f32 = 0.301029995663981195213738894724493027_f32;
/// ln(2)
#[stable(feature = "rust1", since = "1.0.0")]
pub const LN_2: f32 = 0.693147180559945309417232121458176568_f32;
/// ln(10)
#[stable(feature = "rust1", since = "1.0.0")]
pub const LN_10: f32 = 2.30258509299404568401799145468436421_f32;
}
#[cfg(not(test))]
impl f32 {
/// The radix or base of the internal representation of `f32`.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const RADIX: u32 = 2;
/// Number of significant digits in base 2.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MANTISSA_DIGITS: u32 = 24;
/// Approximate number of significant digits in base 10.
///
/// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
/// significant digits can be converted to `f32` and back without loss.
///
/// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
///
/// [`MANTISSA_DIGITS`]: f32::MANTISSA_DIGITS
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const DIGITS: u32 = 6;
/// [Machine epsilon] value for `f32`.
///
/// This is the difference between `1.0` and the next larger representable number.
///
/// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
///
/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
/// [`MANTISSA_DIGITS`]: f32::MANTISSA_DIGITS
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const EPSILON: f32 = 1.19209290e-07_f32;
/// Smallest finite `f32` value.
///
/// Equal to &minus;[`MAX`].
///
/// [`MAX`]: f32::MAX
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN: f32 = -3.40282347e+38_f32;
/// Smallest positive normal `f32` value.
///
/// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
///
/// [`MIN_EXP`]: f32::MIN_EXP
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN_POSITIVE: f32 = 1.17549435e-38_f32;
/// Largest finite `f32` value.
///
/// Equal to
/// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
///
/// [`MANTISSA_DIGITS`]: f32::MANTISSA_DIGITS
/// [`MAX_EXP`]: f32::MAX_EXP
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MAX: f32 = 3.40282347e+38_f32;
/// One greater than the minimum possible normal power of 2 exponent.
///
/// If <i>x</i>&nbsp;=&nbsp;`MIN_EXP`, then normal numbers
/// ≥&nbsp;0.5&nbsp;×&nbsp;2<sup><i>x</i></sup>.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN_EXP: i32 = -125;
/// Maximum possible power of 2 exponent.
///
/// If <i>x</i>&nbsp;=&nbsp;`MAX_EXP`, then normal numbers
/// &lt;&nbsp;1&nbsp;×&nbsp;2<sup><i>x</i></sup>.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MAX_EXP: i32 = 128;
/// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
///
/// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
///
/// [`MIN_POSITIVE`]: f32::MIN_POSITIVE
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN_10_EXP: i32 = -37;
/// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
///
/// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
///
/// [`MAX`]: f32::MAX
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MAX_10_EXP: i32 = 38;
/// Not a Number (NaN).
///
/// Note that IEEE 754 doesn't define just a single NaN value;
/// a plethora of bit patterns are considered to be NaN.
/// Furthermore, the standard makes a difference
/// between a "signaling" and a "quiet" NaN,
/// and allows inspecting its "payload" (the unspecified bits in the bit pattern).
/// This constant isn't guaranteed to equal to any specific NaN bitpattern,
/// and the stability of its representation over Rust versions
/// and target platforms isn't guaranteed.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
#[rustc_diagnostic_item = "f32_nan"]
#[allow(clippy::eq_op)]
pub const NAN: f32 = 0.0_f32 / 0.0_f32;
/// Infinity (∞).
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const INFINITY: f32 = 1.0_f32 / 0.0_f32;
/// Negative infinity (−∞).
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const NEG_INFINITY: f32 = -1.0_f32 / 0.0_f32;
/// Returns `true` if this value is NaN.
///
/// ```
/// let nan = f32::NAN;
/// let f = 7.0_f32;
///
/// assert!(nan.is_nan());
/// assert!(!f.is_nan());
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
#[inline]
#[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
pub const fn is_nan(self) -> bool {
self != self
}
// FIXME(#50145): `abs` is publicly unavailable in core due to
// concerns about portability, so this implementation is for
// private use internally.
#[inline]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
pub(crate) const fn abs_private(self) -> f32 {
// SAFETY: This transmutation is fine. Probably. For the reasons std is using it.
unsafe { mem::transmute::<u32, f32>(mem::transmute::<f32, u32>(self) & 0x7fff_ffff) }
}
/// Returns `true` if this value is positive infinity or negative infinity, and
/// `false` otherwise.
///
/// ```
/// let f = 7.0f32;
/// let inf = f32::INFINITY;
/// let neg_inf = f32::NEG_INFINITY;
/// let nan = f32::NAN;
///
/// assert!(!f.is_infinite());
/// assert!(!nan.is_infinite());
///
/// assert!(inf.is_infinite());
/// assert!(neg_inf.is_infinite());
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
#[inline]
pub const fn is_infinite(self) -> bool {
// Getting clever with transmutation can result in incorrect answers on some FPUs
// FIXME: alter the Rust <-> Rust calling convention to prevent this problem.
// See https://github.com/rust-lang/rust/issues/72327
(self == f32::INFINITY) | (self == f32::NEG_INFINITY)
}
/// Returns `true` if this number is neither infinite nor NaN.
///
/// ```
/// let f = 7.0f32;
/// let inf = f32::INFINITY;
/// let neg_inf = f32::NEG_INFINITY;
/// let nan = f32::NAN;
///
/// assert!(f.is_finite());
///
/// assert!(!nan.is_finite());
/// assert!(!inf.is_finite());
/// assert!(!neg_inf.is_finite());
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
#[inline]
pub const fn is_finite(self) -> bool {
// There's no need to handle NaN separately: if self is NaN,
// the comparison is not true, exactly as desired.
self.abs_private() < Self::INFINITY
}
/// Returns `true` if the number is [subnormal].
///
/// ```
/// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
/// let max = f32::MAX;
/// let lower_than_min = 1.0e-40_f32;
/// let zero = 0.0_f32;
///
/// assert!(!min.is_subnormal());
/// assert!(!max.is_subnormal());
///
/// assert!(!zero.is_subnormal());
/// assert!(!f32::NAN.is_subnormal());
/// assert!(!f32::INFINITY.is_subnormal());
/// // Values between `0` and `min` are Subnormal.
/// assert!(lower_than_min.is_subnormal());
/// ```
/// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
#[must_use]
#[stable(feature = "is_subnormal", since = "1.53.0")]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
#[inline]
pub const fn is_subnormal(self) -> bool {
matches!(self.classify(), FpCategory::Subnormal)
}
/// Returns `true` if the number is neither zero, infinite,
/// [subnormal], or NaN.
///
/// ```
/// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
/// let max = f32::MAX;
/// let lower_than_min = 1.0e-40_f32;
/// let zero = 0.0_f32;
///
/// assert!(min.is_normal());
/// assert!(max.is_normal());
///
/// assert!(!zero.is_normal());
/// assert!(!f32::NAN.is_normal());
/// assert!(!f32::INFINITY.is_normal());
/// // Values between `0` and `min` are Subnormal.
/// assert!(!lower_than_min.is_normal());
/// ```
/// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
#[inline]
pub const fn is_normal(self) -> bool {
matches!(self.classify(), FpCategory::Normal)
}
/// Returns the floating point category of the number. If only one property
/// is going to be tested, it is generally faster to use the specific
/// predicate instead.
///
/// ```
/// use std::num::FpCategory;
///
/// let num = 12.4_f32;
/// let inf = f32::INFINITY;
///
/// assert_eq!(num.classify(), FpCategory::Normal);
/// assert_eq!(inf.classify(), FpCategory::Infinite);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
pub const fn classify(self) -> FpCategory {
// A previous implementation tried to only use bitmask-based checks,
// using f32::to_bits to transmute the float to its bit repr and match on that.
// Unfortunately, floating point numbers can be much worse than that.
// This also needs to not result in recursive evaluations of f64::to_bits.
//
// On some processors, in some cases, LLVM will "helpfully" lower floating point ops,
// in spite of a request for them using f32 and f64, to things like x87 operations.
// These have an f64's mantissa, but can have a larger than normal exponent.
// FIXME(jubilee): Using x87 operations is never necessary in order to function
// on x86 processors for Rust-to-Rust calls, so this issue should not happen.
// Code generation should be adjusted to use non-C calling conventions, avoiding this.
//
if self.is_infinite() {
// Thus, a value may compare unequal to infinity, despite having a "full" exponent mask.
FpCategory::Infinite
} else if self.is_nan() {
// And it may not be NaN, as it can simply be an "overextended" finite value.
FpCategory::Nan
} else {
// However, std can't simply compare to zero to check for zero, either,
// as correctness requires avoiding equality tests that may be Subnormal == -0.0
// because it may be wrong under "denormals are zero" and "flush to zero" modes.
// Most of std's targets don't use those, but they are used for thumbv7neon.
// So, this does use bitpattern matching for the rest.
// SAFETY: f32 to u32 is fine. Usually.
// If classify has gotten this far, the value is definitely in one of these categories.
unsafe { f32::partial_classify(self) }
}
}
// This doesn't actually return a right answer for NaN on purpose,
// seeing as how it cannot correctly discern between a floating point NaN,
// and some normal floating point numbers truncated from an x87 FPU.
// FIXME(jubilee): This probably could at least answer things correctly for Infinity,
// like the f64 version does, but I need to run more checks on how things go on x86.
// I fear losing mantissa data that would have answered that differently.
//
// # Safety
// This requires making sure you call this function for values it answers correctly on,
// otherwise it returns a wrong answer. This is not important for memory safety per se,
// but getting floats correct is important for not accidentally leaking const eval
// runtime-deviating logic which may or may not be acceptable.
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
const unsafe fn partial_classify(self) -> FpCategory {
const EXP_MASK: u32 = 0x7f800000;
const MAN_MASK: u32 = 0x007fffff;
// SAFETY: The caller is not asking questions for which this will tell lies.
let b = unsafe { mem::transmute::<f32, u32>(self) };
match (b & MAN_MASK, b & EXP_MASK) {
(0, 0) => FpCategory::Zero,
(_, 0) => FpCategory::Subnormal,
_ => FpCategory::Normal,
}
}
// This operates on bits, and only bits, so it can ignore concerns about weird FPUs.
// FIXME(jubilee): In a just world, this would be the entire impl for classify,
// plus a transmute. We do not live in a just world, but we can make it more so.
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
const fn classify_bits(b: u32) -> FpCategory {
const EXP_MASK: u32 = 0x7f800000;
const MAN_MASK: u32 = 0x007fffff;
match (b & MAN_MASK, b & EXP_MASK) {
(0, EXP_MASK) => FpCategory::Infinite,
(_, EXP_MASK) => FpCategory::Nan,
(0, 0) => FpCategory::Zero,
(_, 0) => FpCategory::Subnormal,
_ => FpCategory::Normal,
}
}
/// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
/// positive sign bit and positive infinity. Note that IEEE 754 doesn't assign any
/// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that
/// the bit pattern of NaNs are conserved over arithmetic operations, the result of
/// `is_sign_positive` on a NaN might produce an unexpected result in some cases.
/// See [explanation of NaN as a special value](f32) for more info.
///
/// ```
/// let f = 7.0_f32;
/// let g = -7.0_f32;
///
/// assert!(f.is_sign_positive());
/// assert!(!g.is_sign_positive());
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
#[inline]
pub const fn is_sign_positive(self) -> bool {
!self.is_sign_negative()
}
/// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
/// negative sign bit and negative infinity. Note that IEEE 754 doesn't assign any
/// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that
/// the bit pattern of NaNs are conserved over arithmetic operations, the result of
/// `is_sign_negative` on a NaN might produce an unexpected result in some cases.
/// See [explanation of NaN as a special value](f32) for more info.
///
/// ```
/// let f = 7.0f32;
/// let g = -7.0f32;
///
/// assert!(!f.is_sign_negative());
/// assert!(g.is_sign_negative());
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
#[inline]
pub const fn is_sign_negative(self) -> bool {
// IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
// applies to zeros and NaNs as well.
// SAFETY: This is just transmuting to get the sign bit, it's fine.
unsafe { mem::transmute::<f32, u32>(self) & 0x8000_0000 != 0 }
}
/// Returns the least number greater than `self`.
///
/// Let `TINY` be the smallest representable positive `f32`. Then,
/// - if `self.is_nan()`, this returns `self`;
/// - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
/// - if `self` is `-TINY`, this returns -0.0;
/// - if `self` is -0.0 or +0.0, this returns `TINY`;
/// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
/// - otherwise the unique least value greater than `self` is returned.
///
/// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
/// is finite `x == x.next_up().next_down()` also holds.
///
/// ```rust
/// #![feature(float_next_up_down)]
/// // f32::EPSILON is the difference between 1.0 and the next number up.
/// assert_eq!(1.0f32.next_up(), 1.0 + f32::EPSILON);
/// // But not for most numbers.
/// assert!(0.1f32.next_up() < 0.1 + f32::EPSILON);
/// assert_eq!(16777216f32.next_up(), 16777218.0);
/// ```
///
/// [`NEG_INFINITY`]: Self::NEG_INFINITY
/// [`INFINITY`]: Self::INFINITY
/// [`MIN`]: Self::MIN
/// [`MAX`]: Self::MAX
#[unstable(feature = "float_next_up_down", issue = "91399")]
#[rustc_const_unstable(feature = "float_next_up_down", issue = "91399")]
pub const fn next_up(self) -> Self {
// We must use strictly integer arithmetic to prevent denormals from
// flushing to zero after an arithmetic operation on some platforms.
const TINY_BITS: u32 = 0x1; // Smallest positive f32.
const CLEAR_SIGN_MASK: u32 = 0x7fff_ffff;
let bits = self.to_bits();
if self.is_nan() || bits == Self::INFINITY.to_bits() {
return self;
}
let abs = bits & CLEAR_SIGN_MASK;
let next_bits = if abs == 0 {
TINY_BITS
} else if bits == abs {
bits + 1
} else {
bits - 1
};
Self::from_bits(next_bits)
}
/// Returns the greatest number less than `self`.
///
/// Let `TINY` be the smallest representable positive `f32`. Then,
/// - if `self.is_nan()`, this returns `self`;
/// - if `self` is [`INFINITY`], this returns [`MAX`];
/// - if `self` is `TINY`, this returns 0.0;
/// - if `self` is -0.0 or +0.0, this returns `-TINY`;
/// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
/// - otherwise the unique greatest value less than `self` is returned.
///
/// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
/// is finite `x == x.next_down().next_up()` also holds.
///
/// ```rust
/// #![feature(float_next_up_down)]
/// let x = 1.0f32;
/// // Clamp value into range [0, 1).
/// let clamped = x.clamp(0.0, 1.0f32.next_down());
/// assert!(clamped < 1.0);
/// assert_eq!(clamped.next_up(), 1.0);
/// ```
///
/// [`NEG_INFINITY`]: Self::NEG_INFINITY
/// [`INFINITY`]: Self::INFINITY
/// [`MIN`]: Self::MIN
/// [`MAX`]: Self::MAX
#[unstable(feature = "float_next_up_down", issue = "91399")]
#[rustc_const_unstable(feature = "float_next_up_down", issue = "91399")]
pub const fn next_down(self) -> Self {
// We must use strictly integer arithmetic to prevent denormals from
// flushing to zero after an arithmetic operation on some platforms.
const NEG_TINY_BITS: u32 = 0x8000_0001; // Smallest (in magnitude) negative f32.
const CLEAR_SIGN_MASK: u32 = 0x7fff_ffff;
let bits = self.to_bits();
if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
return self;
}
let abs = bits & CLEAR_SIGN_MASK;
let next_bits = if abs == 0 {
NEG_TINY_BITS
} else if bits == abs {
bits - 1
} else {
bits + 1
};
Self::from_bits(next_bits)
}
/// Takes the reciprocal (inverse) of a number, `1/x`.
///
/// ```
/// let x = 2.0_f32;
/// let abs_difference = (x.recip() - (1.0 / x)).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[must_use = "this returns the result of the operation, without modifying the original"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn recip(self) -> f32 {
1.0 / self
}
/// Converts radians to degrees.
///
/// ```
/// let angle = std::f32::consts::PI;
///
/// let abs_difference = (angle.to_degrees() - 180.0).abs();
/// # #[cfg(any(not(target_arch = "x86"), target_feature = "sse2"))]
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[stable(feature = "f32_deg_rad_conversions", since = "1.7.0")]
#[inline]
pub fn to_degrees(self) -> f32 {
// Use a constant for better precision.
const PIS_IN_180: f32 = 57.2957795130823208767981548141051703_f32;
self * PIS_IN_180
}
/// Converts degrees to radians.
///
/// ```
/// let angle = 180.0f32;
///
/// let abs_difference = (angle.to_radians() - std::f32::consts::PI).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[stable(feature = "f32_deg_rad_conversions", since = "1.7.0")]
#[inline]
pub fn to_radians(self) -> f32 {
const RADS_PER_DEG: f32 = consts::PI / 180.0;
self * RADS_PER_DEG
}
/// Returns the maximum of the two numbers, ignoring NaN.
///
/// If one of the arguments is NaN, then the other argument is returned.
/// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
/// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
/// This also matches the behavior of libms fmax.
///
/// ```
/// let x = 1.0f32;
/// let y = 2.0f32;
///
/// assert_eq!(x.max(y), y);
/// ```
#[must_use = "this returns the result of the comparison, without modifying either input"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn max(self, other: f32) -> f32 {
intrinsics::maxnumf32(self, other)
}
/// Returns the minimum of the two numbers, ignoring NaN.
///
/// If one of the arguments is NaN, then the other argument is returned.
/// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
/// this function handles all NaNs the same way and avoids minNum's problems with associativity.
/// This also matches the behavior of libms fmin.
///
/// ```
/// let x = 1.0f32;
/// let y = 2.0f32;
///
/// assert_eq!(x.min(y), x);
/// ```
#[must_use = "this returns the result of the comparison, without modifying either input"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn min(self, other: f32) -> f32 {
intrinsics::minnumf32(self, other)
}
/// Returns the maximum of the two numbers, propagating NaN.
///
/// This returns NaN when *either* argument is NaN, as opposed to
/// [`f32::max`] which only returns NaN when *both* arguments are NaN.
///
/// ```
/// #![feature(float_minimum_maximum)]
/// let x = 1.0f32;
/// let y = 2.0f32;
///
/// assert_eq!(x.maximum(y), y);
/// assert!(x.maximum(f32::NAN).is_nan());
/// ```
///
/// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
/// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
/// Note that this follows the semantics specified in IEEE 754-2019.
///
/// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
/// operand is conserved; see [explanation of NaN as a special value](f32) for more info.
#[must_use = "this returns the result of the comparison, without modifying either input"]
#[unstable(feature = "float_minimum_maximum", issue = "91079")]
#[inline]
pub fn maximum(self, other: f32) -> f32 {
if self > other {
self
} else if other > self {
other
} else if self == other {
if self.is_sign_positive() && other.is_sign_negative() { self } else { other }
} else {
self + other
}
}
/// Returns the minimum of the two numbers, propagating NaN.
///
/// This returns NaN when *either* argument is NaN, as opposed to
/// [`f32::min`] which only returns NaN when *both* arguments are NaN.
///
/// ```
/// #![feature(float_minimum_maximum)]
/// let x = 1.0f32;
/// let y = 2.0f32;
///
/// assert_eq!(x.minimum(y), x);
/// assert!(x.minimum(f32::NAN).is_nan());
/// ```
///
/// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
/// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
/// Note that this follows the semantics specified in IEEE 754-2019.
///
/// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
/// operand is conserved; see [explanation of NaN as a special value](f32) for more info.
#[must_use = "this returns the result of the comparison, without modifying either input"]
#[unstable(feature = "float_minimum_maximum", issue = "91079")]
#[inline]
pub fn minimum(self, other: f32) -> f32 {
if self < other {
self
} else if other < self {
other
} else if self == other {
if self.is_sign_negative() && other.is_sign_positive() { self } else { other }
} else {
// At least one input is NaN. Use `+` to perform NaN propagation and quieting.
self + other
}
}
/// Calculates the middle point of `self` and `rhs`.
///
/// This returns NaN when *either* argument is NaN or if a combination of
/// +inf and -inf is provided as arguments.
///
/// # Examples
///
/// ```
/// #![feature(num_midpoint)]
/// assert_eq!(1f32.midpoint(4.0), 2.5);
/// assert_eq!((-5.5f32).midpoint(8.0), 1.25);
/// ```
#[unstable(feature = "num_midpoint", issue = "110840")]
pub fn midpoint(self, other: f32) -> f32 {
const LO: f32 = f32::MIN_POSITIVE * 2.;
const HI: f32 = f32::MAX / 2.;
let (a, b) = (self, other);
let abs_a = a.abs_private();
let abs_b = b.abs_private();
if abs_a <= HI && abs_b <= HI {
// Overflow is impossible
(a + b) / 2.
} else if abs_a < LO {
// Not safe to halve a
a + (b / 2.)
} else if abs_b < LO {
// Not safe to halve b
(a / 2.) + b
} else {
// Not safe to halve a and b
(a / 2.) + (b / 2.)
}
}
/// Rounds toward zero and converts to any primitive integer type,
/// assuming that the value is finite and fits in that type.
///
/// ```
/// let value = 4.6_f32;
/// let rounded = unsafe { value.to_int_unchecked::<u16>() };
/// assert_eq!(rounded, 4);
///
/// let value = -128.9_f32;
/// let rounded = unsafe { value.to_int_unchecked::<i8>() };
/// assert_eq!(rounded, i8::MIN);
/// ```
///
/// # Safety
///
/// The value must:
///
/// * Not be `NaN`
/// * Not be infinite
/// * Be representable in the return type `Int`, after truncating off its fractional part
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[stable(feature = "float_approx_unchecked_to", since = "1.44.0")]
#[inline]
pub unsafe fn to_int_unchecked<Int>(self) -> Int
where
Self: FloatToInt<Int>,
{
// SAFETY: the caller must uphold the safety contract for
// `FloatToInt::to_int_unchecked`.
unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
}
/// Raw transmutation to `u32`.
///
/// This is currently identical to `transmute::<f32, u32>(self)` on all platforms.
///
/// See [`from_bits`](Self::from_bits) for some discussion of the
/// portability of this operation (there are almost no issues).
///
/// Note that this function is distinct from `as` casting, which attempts to
/// preserve the *numeric* value, and not the bitwise value.
///
/// # Examples
///
/// ```
/// assert_ne!((1f32).to_bits(), 1f32 as u32); // to_bits() is not casting!
/// assert_eq!((12.5f32).to_bits(), 0x41480000);
///
/// ```
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[stable(feature = "float_bits_conv", since = "1.20.0")]
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
#[inline]
pub const fn to_bits(self) -> u32 {
// SAFETY: `u32` is a plain old datatype so we can always transmute to it.
// ...sorta.
//
// It turns out that at runtime, it is possible for a floating point number
// to be subject to a floating point mode that alters nonzero subnormal numbers
// to zero on reads and writes, aka "denormals are zero" and "flush to zero".
// This is not a problem per se, but at least one tier2 platform for Rust
// actually exhibits this behavior by default.
//
// In addition, on x86 targets with SSE or SSE2 disabled and the x87 FPU enabled,
// i.e. not soft-float, the way Rust does parameter passing can actually alter
// a number that is "not infinity" to have the same exponent as infinity,
// in a slightly unpredictable manner.
//
// And, of course evaluating to a NaN value is fairly nondeterministic.
// More precisely: when NaN should be returned is knowable, but which NaN?
// So far that's defined by a combination of LLVM and the CPU, not Rust.
// This function, however, allows observing the bitstring of a NaN,
// thus introspection on CTFE.
//
// In order to preserve, at least for the moment, const-to-runtime equivalence,
// we reject any of these possible situations from happening.
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
const fn ct_f32_to_u32(ct: f32) -> u32 {
match ct.classify() {
FpCategory::Nan => {
panic!("const-eval error: cannot use f32::to_bits on a NaN")
}
FpCategory::Subnormal => {
panic!("const-eval error: cannot use f32::to_bits on a subnormal number")
}
FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => {
// SAFETY: We have a normal floating point number. Now we transmute, i.e. do a bitcopy.
unsafe { mem::transmute::<f32, u32>(ct) }
}
}
}
#[inline(always)] // See https://github.com/rust-lang/compiler-builtins/issues/491
fn rt_f32_to_u32(x: f32) -> u32 {
// SAFETY: `u32` is a plain old datatype so we can always... uh...
// ...look, just pretend you forgot what you just read.
// Stability concerns.
unsafe { mem::transmute(x) }
}
intrinsics::const_eval_select((self,), ct_f32_to_u32, rt_f32_to_u32)
}
/// Raw transmutation from `u32`.
///
/// This is currently identical to `transmute::<u32, f32>(v)` on all platforms.
/// It turns out this is incredibly portable, for two reasons:
///
/// * Floats and Ints have the same endianness on all supported platforms.
/// * IEEE 754 very precisely specifies the bit layout of floats.
///
/// However there is one caveat: prior to the 2008 version of IEEE 754, how
/// to interpret the NaN signaling bit wasn't actually specified. Most platforms
/// (notably x86 and ARM) picked the interpretation that was ultimately
/// standardized in 2008, but some didn't (notably MIPS). As a result, all
/// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
///
/// Rather than trying to preserve signaling-ness cross-platform, this
/// implementation favors preserving the exact bits. This means that
/// any payloads encoded in NaNs will be preserved even if the result of
/// this method is sent over the network from an x86 machine to a MIPS one.
///
/// If the results of this method are only manipulated by the same
/// architecture that produced them, then there is no portability concern.
///
/// If the input isn't NaN, then there is no portability concern.
///
/// If you don't care about signalingness (very likely), then there is no
/// portability concern.
///
/// Note that this function is distinct from `as` casting, which attempts to
/// preserve the *numeric* value, and not the bitwise value.
///
/// # Examples
///
/// ```
/// let v = f32::from_bits(0x41480000);
/// assert_eq!(v, 12.5);
/// ```
#[stable(feature = "float_bits_conv", since = "1.20.0")]
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
#[must_use]
#[inline]
pub const fn from_bits(v: u32) -> Self {
// It turns out the safety issues with sNaN were overblown! Hooray!
// SAFETY: `u32` is a plain old datatype so we can always transmute from it
// ...sorta.
//
// It turns out that at runtime, it is possible for a floating point number
// to be subject to floating point modes that alter nonzero subnormal numbers
// to zero on reads and writes, aka "denormals are zero" and "flush to zero".
// This is not a problem usually, but at least one tier2 platform for Rust
// actually exhibits this behavior by default: thumbv7neon
// aka "the Neon FPU in AArch32 state"
//
// In addition, on x86 targets with SSE or SSE2 disabled and the x87 FPU enabled,
// i.e. not soft-float, the way Rust does parameter passing can actually alter
// a number that is "not infinity" to have the same exponent as infinity,
// in a slightly unpredictable manner.
//
// And, of course evaluating to a NaN value is fairly nondeterministic.
// More precisely: when NaN should be returned is knowable, but which NaN?
// So far that's defined by a combination of LLVM and the CPU, not Rust.
// This function, however, allows observing the bitstring of a NaN,
// thus introspection on CTFE.
//
// In order to preserve, at least for the moment, const-to-runtime equivalence,
// reject any of these possible situations from happening.
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
const fn ct_u32_to_f32(ct: u32) -> f32 {
match f32::classify_bits(ct) {
FpCategory::Subnormal => {
panic!("const-eval error: cannot use f32::from_bits on a subnormal number")
}
FpCategory::Nan => {
panic!("const-eval error: cannot use f32::from_bits on NaN")
}
FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => {
// SAFETY: It's not a frumious number
unsafe { mem::transmute::<u32, f32>(ct) }
}
}
}
#[inline(always)] // See https://github.com/rust-lang/compiler-builtins/issues/491
fn rt_u32_to_f32(x: u32) -> f32 {
// SAFETY: `u32` is a plain old datatype so we can always... uh...
// ...look, just pretend you forgot what you just read.
// Stability concerns.
unsafe { mem::transmute(x) }
}
intrinsics::const_eval_select((v,), ct_u32_to_f32, rt_u32_to_f32)
}
/// Return the memory representation of this floating point number as a byte array in
/// big-endian (network) byte order.
///
/// See [`from_bits`](Self::from_bits) for some discussion of the
/// portability of this operation (there are almost no issues).
///
/// # Examples
///
/// ```
/// let bytes = 12.5f32.to_be_bytes();
/// assert_eq!(bytes, [0x41, 0x48, 0x00, 0x00]);
/// ```
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[stable(feature = "float_to_from_bytes", since = "1.40.0")]
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
#[inline]
pub const fn to_be_bytes(self) -> [u8; 4] {
self.to_bits().to_be_bytes()
}
/// Return the memory representation of this floating point number as a byte array in
/// little-endian byte order.
///
/// See [`from_bits`](Self::from_bits) for some discussion of the
/// portability of this operation (there are almost no issues).
///
/// # Examples
///
/// ```
/// let bytes = 12.5f32.to_le_bytes();
/// assert_eq!(bytes, [0x00, 0x00, 0x48, 0x41]);
/// ```
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[stable(feature = "float_to_from_bytes", since = "1.40.0")]
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
#[inline]
pub const fn to_le_bytes(self) -> [u8; 4] {
self.to_bits().to_le_bytes()
}
/// Return the memory representation of this floating point number as a byte array in
/// native byte order.
///
/// As the target platform's native endianness is used, portable code
/// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
///
/// [`to_be_bytes`]: f32::to_be_bytes
/// [`to_le_bytes`]: f32::to_le_bytes
///
/// See [`from_bits`](Self::from_bits) for some discussion of the
/// portability of this operation (there are almost no issues).
///
/// # Examples
///
/// ```
/// let bytes = 12.5f32.to_ne_bytes();
/// assert_eq!(
/// bytes,
/// if cfg!(target_endian = "big") {
/// [0x41, 0x48, 0x00, 0x00]
/// } else {
/// [0x00, 0x00, 0x48, 0x41]
/// }
/// );
/// ```
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[stable(feature = "float_to_from_bytes", since = "1.40.0")]
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
#[inline]
pub const fn to_ne_bytes(self) -> [u8; 4] {
self.to_bits().to_ne_bytes()
}
/// Create a floating point value from its representation as a byte array in big endian.
///
/// See [`from_bits`](Self::from_bits) for some discussion of the
/// portability of this operation (there are almost no issues).
///
/// # Examples
///
/// ```
/// let value = f32::from_be_bytes([0x41, 0x48, 0x00, 0x00]);
/// assert_eq!(value, 12.5);
/// ```
#[stable(feature = "float_to_from_bytes", since = "1.40.0")]
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
#[must_use]
#[inline]
pub const fn from_be_bytes(bytes: [u8; 4]) -> Self {
Self::from_bits(u32::from_be_bytes(bytes))
}
/// Create a floating point value from its representation as a byte array in little endian.
///
/// See [`from_bits`](Self::from_bits) for some discussion of the
/// portability of this operation (there are almost no issues).
///
/// # Examples
///
/// ```
/// let value = f32::from_le_bytes([0x00, 0x00, 0x48, 0x41]);
/// assert_eq!(value, 12.5);
/// ```
#[stable(feature = "float_to_from_bytes", since = "1.40.0")]
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
#[must_use]
#[inline]
pub const fn from_le_bytes(bytes: [u8; 4]) -> Self {
Self::from_bits(u32::from_le_bytes(bytes))
}
/// Create a floating point value from its representation as a byte array in native endian.
///
/// As the target platform's native endianness is used, portable code
/// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
/// appropriate instead.
///
/// [`from_be_bytes`]: f32::from_be_bytes
/// [`from_le_bytes`]: f32::from_le_bytes
///
/// See [`from_bits`](Self::from_bits) for some discussion of the
/// portability of this operation (there are almost no issues).
///
/// # Examples
///
/// ```
/// let value = f32::from_ne_bytes(if cfg!(target_endian = "big") {
/// [0x41, 0x48, 0x00, 0x00]
/// } else {
/// [0x00, 0x00, 0x48, 0x41]
/// });
/// assert_eq!(value, 12.5);
/// ```
#[stable(feature = "float_to_from_bytes", since = "1.40.0")]
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
#[must_use]
#[inline]
pub const fn from_ne_bytes(bytes: [u8; 4]) -> Self {
Self::from_bits(u32::from_ne_bytes(bytes))
}
/// Return the ordering between `self` and `other`.
///
/// Unlike the standard partial comparison between floating point numbers,
/// this comparison always produces an ordering in accordance to
/// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
/// floating point standard. The values are ordered in the following sequence:
///
/// - negative quiet NaN
/// - negative signaling NaN
/// - negative infinity
/// - negative numbers
/// - negative subnormal numbers
/// - negative zero
/// - positive zero
/// - positive subnormal numbers
/// - positive numbers
/// - positive infinity
/// - positive signaling NaN
/// - positive quiet NaN.
///
/// The ordering established by this function does not always agree with the
/// [`PartialOrd`] and [`PartialEq`] implementations of `f32`. For example,
/// they consider negative and positive zero equal, while `total_cmp`
/// doesn't.
///
/// The interpretation of the signaling NaN bit follows the definition in
/// the IEEE 754 standard, which may not match the interpretation by some of
/// the older, non-conformant (e.g. MIPS) hardware implementations.
///
/// # Example
///
/// ```
/// struct GoodBoy {
/// name: String,
/// weight: f32,
/// }
///
/// let mut bois = vec![
/// GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
/// GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
/// GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
/// GoodBoy { name: "Chonk".to_owned(), weight: f32::INFINITY },
/// GoodBoy { name: "Abs. Unit".to_owned(), weight: f32::NAN },
/// GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
/// ];
///
/// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
///
/// // `f32::NAN` could be positive or negative, which will affect the sort order.
/// if f32::NAN.is_sign_negative() {
/// assert!(bois.into_iter().map(|b| b.weight)
/// .zip([f32::NAN, -5.0, 0.1, 10.0, 99.0, f32::INFINITY].iter())
/// .all(|(a, b)| a.to_bits() == b.to_bits()))
/// } else {
/// assert!(bois.into_iter().map(|b| b.weight)
/// .zip([-5.0, 0.1, 10.0, 99.0, f32::INFINITY, f32::NAN].iter())
/// .all(|(a, b)| a.to_bits() == b.to_bits()))
/// }
/// ```
#[stable(feature = "total_cmp", since = "1.62.0")]
#[must_use]
#[inline]
pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
let mut left = self.to_bits() as i32;
let mut right = other.to_bits() as i32;
// In case of negatives, flip all the bits except the sign
// to achieve a similar layout as two's complement integers
//
// Why does this work? IEEE 754 floats consist of three fields:
// Sign bit, exponent and mantissa. The set of exponent and mantissa
// fields as a whole have the property that their bitwise order is
// equal to the numeric magnitude where the magnitude is defined.
// The magnitude is not normally defined on NaN values, but
// IEEE 754 totalOrder defines the NaN values also to follow the
// bitwise order. This leads to order explained in the doc comment.
// However, the representation of magnitude is the same for negative
// and positive numbers only the sign bit is different.
// To easily compare the floats as signed integers, we need to
// flip the exponent and mantissa bits in case of negative numbers.
// We effectively convert the numbers to "two's complement" form.
//
// To do the flipping, we construct a mask and XOR against it.
// We branchlessly calculate an "all-ones except for the sign bit"
// mask from negative-signed values: right shifting sign-extends
// the integer, so we "fill" the mask with sign bits, and then
// convert to unsigned to push one more zero bit.
// On positive values, the mask is all zeros, so it's a no-op.
left ^= (((left >> 31) as u32) >> 1) as i32;
right ^= (((right >> 31) as u32) >> 1) as i32;
left.cmp(&right)
}
/// Restrict a value to a certain interval unless it is NaN.
///
/// Returns `max` if `self` is greater than `max`, and `min` if `self` is
/// less than `min`. Otherwise this returns `self`.
///
/// Note that this function returns NaN if the initial value was NaN as
/// well.
///
/// # Panics
///
/// Panics if `min > max`, `min` is NaN, or `max` is NaN.
///
/// # Examples
///
/// ```
/// assert!((-3.0f32).clamp(-2.0, 1.0) == -2.0);
/// assert!((0.0f32).clamp(-2.0, 1.0) == 0.0);
/// assert!((2.0f32).clamp(-2.0, 1.0) == 1.0);
/// assert!((f32::NAN).clamp(-2.0, 1.0).is_nan());
/// ```
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "clamp", since = "1.50.0")]
#[inline]
pub fn clamp(mut self, min: f32, max: f32) -> f32 {
assert!(min <= max, "min > max, or either was NaN. min = {min:?}, max = {max:?}");
if self < min {
self = min;
}
if self > max {
self = max;
}
self
}
}