rust/library/core/src/num/int_macros.rs

3602 lines
148 KiB
Rust
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

macro_rules! int_impl {
(
Self = $SelfT:ty,
ActualT = $ActualT:ident,
UnsignedT = $UnsignedT:ty,
// There are all for use *only* in doc comments.
// As such, they're all passed as literals -- passing them as a string
// literal is fine if they need to be multiple code tokens.
// In non-comments, use the associated constants rather than these.
BITS = $BITS:literal,
BITS_MINUS_ONE = $BITS_MINUS_ONE:literal,
Min = $Min:literal,
Max = $Max:literal,
rot = $rot:literal,
rot_op = $rot_op:literal,
rot_result = $rot_result:literal,
swap_op = $swap_op:literal,
swapped = $swapped:literal,
reversed = $reversed:literal,
le_bytes = $le_bytes:literal,
be_bytes = $be_bytes:literal,
to_xe_bytes_doc = $to_xe_bytes_doc:expr,
from_xe_bytes_doc = $from_xe_bytes_doc:expr,
bound_condition = $bound_condition:literal,
) => {
/// The smallest value that can be represented by this integer type
#[doc = concat!("(&minus;2<sup>", $BITS_MINUS_ONE, "</sup>", $bound_condition, ").")]
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN, ", stringify!($Min), ");")]
/// ```
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN: Self = !Self::MAX;
/// The largest value that can be represented by this integer type
#[doc = concat!("(2<sup>", $BITS_MINUS_ONE, "</sup> &minus; 1", $bound_condition, ").")]
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX, ", stringify!($Max), ");")]
/// ```
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MAX: Self = (<$UnsignedT>::MAX >> 1) as Self;
/// The size of this integer type in bits.
///
/// # Examples
///
/// ```
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::BITS, ", stringify!($BITS), ");")]
/// ```
#[stable(feature = "int_bits_const", since = "1.53.0")]
pub const BITS: u32 = <$UnsignedT>::BITS;
/// Returns the number of ones in the binary representation of `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 0b100_0000", stringify!($SelfT), ";")]
///
/// assert_eq!(n.count_ones(), 1);
/// ```
///
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[doc(alias = "popcount")]
#[doc(alias = "popcnt")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn count_ones(self) -> u32 { (self as $UnsignedT).count_ones() }
/// Returns the number of zeros in the binary representation of `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.count_zeros(), 1);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn count_zeros(self) -> u32 {
(!self).count_ones()
}
/// Returns the number of leading zeros in the binary representation of `self`.
///
/// Depending on what you're doing with the value, you might also be interested in the
/// [`ilog2`] function which returns a consistent number, even if the type widens.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = -1", stringify!($SelfT), ";")]
///
/// assert_eq!(n.leading_zeros(), 0);
/// ```
#[doc = concat!("[`ilog2`]: ", stringify!($SelfT), "::ilog2")]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn leading_zeros(self) -> u32 {
(self as $UnsignedT).leading_zeros()
}
/// Returns the number of trailing zeros in the binary representation of `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = -4", stringify!($SelfT), ";")]
///
/// assert_eq!(n.trailing_zeros(), 2);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn trailing_zeros(self) -> u32 {
(self as $UnsignedT).trailing_zeros()
}
/// Returns the number of leading ones in the binary representation of `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = -1", stringify!($SelfT), ";")]
///
#[doc = concat!("assert_eq!(n.leading_ones(), ", stringify!($BITS), ");")]
/// ```
#[stable(feature = "leading_trailing_ones", since = "1.46.0")]
#[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn leading_ones(self) -> u32 {
(self as $UnsignedT).leading_ones()
}
/// Returns the number of trailing ones in the binary representation of `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 3", stringify!($SelfT), ";")]
///
/// assert_eq!(n.trailing_ones(), 2);
/// ```
#[stable(feature = "leading_trailing_ones", since = "1.46.0")]
#[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn trailing_ones(self) -> u32 {
(self as $UnsignedT).trailing_ones()
}
/// Returns the bit pattern of `self` reinterpreted as an unsigned integer of the same size.
///
/// This produces the same result as an `as` cast, but ensures that the bit-width remains
/// the same.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(integer_sign_cast)]
///
#[doc = concat!("let n = -1", stringify!($SelfT), ";")]
///
#[doc = concat!("assert_eq!(n.cast_unsigned(), ", stringify!($UnsignedT), "::MAX);")]
/// ```
#[unstable(feature = "integer_sign_cast", issue = "125882")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn cast_unsigned(self) -> $UnsignedT {
self as $UnsignedT
}
/// Shifts the bits to the left by a specified amount, `n`,
/// wrapping the truncated bits to the end of the resulting integer.
///
/// Please note this isn't the same operation as the `<<` shifting operator!
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = ", $rot_op, stringify!($SelfT), ";")]
#[doc = concat!("let m = ", $rot_result, ";")]
///
#[doc = concat!("assert_eq!(n.rotate_left(", $rot, "), m);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn rotate_left(self, n: u32) -> Self {
(self as $UnsignedT).rotate_left(n) as Self
}
/// Shifts the bits to the right by a specified amount, `n`,
/// wrapping the truncated bits to the beginning of the resulting
/// integer.
///
/// Please note this isn't the same operation as the `>>` shifting operator!
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = ", $rot_result, stringify!($SelfT), ";")]
#[doc = concat!("let m = ", $rot_op, ";")]
///
#[doc = concat!("assert_eq!(n.rotate_right(", $rot, "), m);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn rotate_right(self, n: u32) -> Self {
(self as $UnsignedT).rotate_right(n) as Self
}
/// Reverses the byte order of the integer.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
///
/// let m = n.swap_bytes();
///
#[doc = concat!("assert_eq!(m, ", $swapped, ");")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn swap_bytes(self) -> Self {
(self as $UnsignedT).swap_bytes() as Self
}
/// Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,
/// second least-significant bit becomes second most-significant bit, etc.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
/// let m = n.reverse_bits();
///
#[doc = concat!("assert_eq!(m, ", $reversed, ");")]
#[doc = concat!("assert_eq!(0, 0", stringify!($SelfT), ".reverse_bits());")]
/// ```
#[stable(feature = "reverse_bits", since = "1.37.0")]
#[rustc_const_stable(feature = "reverse_bits", since = "1.37.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn reverse_bits(self) -> Self {
(self as $UnsignedT).reverse_bits() as Self
}
/// Converts an integer from big endian to the target's endianness.
///
/// On big endian this is a no-op. On little endian the bytes are swapped.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
///
/// if cfg!(target_endian = "big") {
#[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_be(n), n)")]
/// } else {
#[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_be(n), n.swap_bytes())")]
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
#[must_use]
#[inline]
pub const fn from_be(x: Self) -> Self {
#[cfg(target_endian = "big")]
{
x
}
#[cfg(not(target_endian = "big"))]
{
x.swap_bytes()
}
}
/// Converts an integer from little endian to the target's endianness.
///
/// On little endian this is a no-op. On big endian the bytes are swapped.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
///
/// if cfg!(target_endian = "little") {
#[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_le(n), n)")]
/// } else {
#[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_le(n), n.swap_bytes())")]
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
#[must_use]
#[inline]
pub const fn from_le(x: Self) -> Self {
#[cfg(target_endian = "little")]
{
x
}
#[cfg(not(target_endian = "little"))]
{
x.swap_bytes()
}
}
/// Converts `self` to big endian from the target's endianness.
///
/// On big endian this is a no-op. On little endian the bytes are swapped.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
///
/// if cfg!(target_endian = "big") {
/// assert_eq!(n.to_be(), n)
/// } else {
/// assert_eq!(n.to_be(), n.swap_bytes())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn to_be(self) -> Self { // or not to be?
#[cfg(target_endian = "big")]
{
self
}
#[cfg(not(target_endian = "big"))]
{
self.swap_bytes()
}
}
/// Converts `self` to little endian from the target's endianness.
///
/// On little endian this is a no-op. On big endian the bytes are swapped.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
///
/// if cfg!(target_endian = "little") {
/// assert_eq!(n.to_le(), n)
/// } else {
/// assert_eq!(n.to_le(), n.swap_bytes())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_conversions", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn to_le(self) -> Self {
#[cfg(target_endian = "little")]
{
self
}
#[cfg(not(target_endian = "little"))]
{
self.swap_bytes()
}
}
/// Checked integer addition. Computes `self + rhs`, returning `None`
/// if overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(1), Some(", stringify!($SelfT), "::MAX - 1));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(3), None);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_add(self, rhs: Self) -> Option<Self> {
let (a, b) = self.overflowing_add(rhs);
if unlikely!(b) { None } else { Some(a) }
}
/// Strict integer addition. Computes `self + rhs`, panicking
/// if overflow occurred.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).strict_add(1), ", stringify!($SelfT), "::MAX - 1);")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add(3);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[rustc_const_unstable(feature = "const_strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_add(self, rhs: Self) -> Self {
let (a, b) = self.overflowing_add(rhs);
if unlikely!(b) { overflow_panic::add() } else { a }
}
/// Unchecked integer addition. Computes `self + rhs`, assuming overflow
/// cannot occur.
///
/// Calling `x.unchecked_add(y)` is semantically equivalent to calling
/// `x.`[`checked_add`]`(y).`[`unwrap_unchecked`]`()`.
///
/// If you're just trying to avoid the panic in debug mode, then **do not**
/// use this. Instead, you're looking for [`wrapping_add`].
///
/// # Safety
///
/// This results in undefined behavior when
#[doc = concat!("`self + rhs > ", stringify!($SelfT), "::MAX` or `self + rhs < ", stringify!($SelfT), "::MIN`,")]
/// i.e. when [`checked_add`] would return `None`.
///
/// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
#[doc = concat!("[`checked_add`]: ", stringify!($SelfT), "::checked_add")]
#[doc = concat!("[`wrapping_add`]: ", stringify!($SelfT), "::wrapping_add")]
#[stable(feature = "unchecked_math", since = "1.79.0")]
#[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn unchecked_add(self, rhs: Self) -> Self {
assert_unsafe_precondition!(
check_language_ub,
concat!(stringify!($SelfT), "::unchecked_add cannot overflow"),
(
lhs: $SelfT = self,
rhs: $SelfT = rhs,
) => !lhs.overflowing_add(rhs).1,
);
// SAFETY: this is guaranteed to be safe by the caller.
unsafe {
intrinsics::unchecked_add(self, rhs)
}
}
/// Checked addition with an unsigned integer. Computes `self + rhs`,
/// returning `None` if overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_unsigned(2), Some(3));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add_unsigned(3), None);")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_add_unsigned(self, rhs: $UnsignedT) -> Option<Self> {
let (a, b) = self.overflowing_add_unsigned(rhs);
if unlikely!(b) { None } else { Some(a) }
}
/// Strict addition with an unsigned integer. Computes `self + rhs`,
/// panicking if overflow occurred.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_add_unsigned(2), 3);")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add_unsigned(3);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[rustc_const_unstable(feature = "const_strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_add_unsigned(self, rhs: $UnsignedT) -> Self {
let (a, b) = self.overflowing_add_unsigned(rhs);
if unlikely!(b) { overflow_panic::add() } else { a }
}
/// Checked integer subtraction. Computes `self - rhs`, returning `None` if
/// overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub(1), Some(", stringify!($SelfT), "::MIN + 1));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub(3), None);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_sub(self, rhs: Self) -> Option<Self> {
let (a, b) = self.overflowing_sub(rhs);
if unlikely!(b) { None } else { Some(a) }
}
/// Strict integer subtraction. Computes `self - rhs`, panicking if
/// overflow occurred.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).strict_sub(1), ", stringify!($SelfT), "::MIN + 1);")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = (", stringify!($SelfT), "::MIN + 2).strict_sub(3);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[rustc_const_unstable(feature = "const_strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_sub(self, rhs: Self) -> Self {
let (a, b) = self.overflowing_sub(rhs);
if unlikely!(b) { overflow_panic::sub() } else { a }
}
/// Unchecked integer subtraction. Computes `self - rhs`, assuming overflow
/// cannot occur.
///
/// Calling `x.unchecked_sub(y)` is semantically equivalent to calling
/// `x.`[`checked_sub`]`(y).`[`unwrap_unchecked`]`()`.
///
/// If you're just trying to avoid the panic in debug mode, then **do not**
/// use this. Instead, you're looking for [`wrapping_sub`].
///
/// # Safety
///
/// This results in undefined behavior when
#[doc = concat!("`self - rhs > ", stringify!($SelfT), "::MAX` or `self - rhs < ", stringify!($SelfT), "::MIN`,")]
/// i.e. when [`checked_sub`] would return `None`.
///
/// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
#[doc = concat!("[`checked_sub`]: ", stringify!($SelfT), "::checked_sub")]
#[doc = concat!("[`wrapping_sub`]: ", stringify!($SelfT), "::wrapping_sub")]
#[stable(feature = "unchecked_math", since = "1.79.0")]
#[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn unchecked_sub(self, rhs: Self) -> Self {
assert_unsafe_precondition!(
check_language_ub,
concat!(stringify!($SelfT), "::unchecked_sub cannot overflow"),
(
lhs: $SelfT = self,
rhs: $SelfT = rhs,
) => !lhs.overflowing_sub(rhs).1,
);
// SAFETY: this is guaranteed to be safe by the caller.
unsafe {
intrinsics::unchecked_sub(self, rhs)
}
}
/// Checked subtraction with an unsigned integer. Computes `self - rhs`,
/// returning `None` if overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_unsigned(2), Some(-1));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).checked_sub_unsigned(3), None);")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_sub_unsigned(self, rhs: $UnsignedT) -> Option<Self> {
let (a, b) = self.overflowing_sub_unsigned(rhs);
if unlikely!(b) { None } else { Some(a) }
}
/// Strict subtraction with an unsigned integer. Computes `self - rhs`,
/// panicking if overflow occurred.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_sub_unsigned(2), -1);")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = (", stringify!($SelfT), "::MIN + 2).strict_sub_unsigned(3);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[rustc_const_unstable(feature = "const_strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_sub_unsigned(self, rhs: $UnsignedT) -> Self {
let (a, b) = self.overflowing_sub_unsigned(rhs);
if unlikely!(b) { overflow_panic::sub() } else { a }
}
/// Checked integer multiplication. Computes `self * rhs`, returning `None` if
/// overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(1), Some(", stringify!($SelfT), "::MAX));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(2), None);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_mul(self, rhs: Self) -> Option<Self> {
let (a, b) = self.overflowing_mul(rhs);
if unlikely!(b) { None } else { Some(a) }
}
/// Strict integer multiplication. Computes `self * rhs`, panicking if
/// overflow occurred.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.strict_mul(1), ", stringify!($SelfT), "::MAX);")]
/// ```
///
/// The following panics because of overflow:
///
/// ``` should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_mul(2);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[rustc_const_unstable(feature = "const_strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_mul(self, rhs: Self) -> Self {
let (a, b) = self.overflowing_mul(rhs);
if unlikely!(b) { overflow_panic::mul() } else { a }
}
/// Unchecked integer multiplication. Computes `self * rhs`, assuming overflow
/// cannot occur.
///
/// Calling `x.unchecked_mul(y)` is semantically equivalent to calling
/// `x.`[`checked_mul`]`(y).`[`unwrap_unchecked`]`()`.
///
/// If you're just trying to avoid the panic in debug mode, then **do not**
/// use this. Instead, you're looking for [`wrapping_mul`].
///
/// # Safety
///
/// This results in undefined behavior when
#[doc = concat!("`self * rhs > ", stringify!($SelfT), "::MAX` or `self * rhs < ", stringify!($SelfT), "::MIN`,")]
/// i.e. when [`checked_mul`] would return `None`.
///
/// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
#[doc = concat!("[`checked_mul`]: ", stringify!($SelfT), "::checked_mul")]
#[doc = concat!("[`wrapping_mul`]: ", stringify!($SelfT), "::wrapping_mul")]
#[stable(feature = "unchecked_math", since = "1.79.0")]
#[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn unchecked_mul(self, rhs: Self) -> Self {
assert_unsafe_precondition!(
check_language_ub,
concat!(stringify!($SelfT), "::unchecked_mul cannot overflow"),
(
lhs: $SelfT = self,
rhs: $SelfT = rhs,
) => !lhs.overflowing_mul(rhs).1,
);
// SAFETY: this is guaranteed to be safe by the caller.
unsafe {
intrinsics::unchecked_mul(self, rhs)
}
}
/// Checked integer division. Computes `self / rhs`, returning `None` if `rhs == 0`
/// or the division results in overflow.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).checked_div(-1), Some(", stringify!($Max), "));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_div(-1), None);")]
#[doc = concat!("assert_eq!((1", stringify!($SelfT), ").checked_div(0), None);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_div(self, rhs: Self) -> Option<Self> {
if unlikely!(rhs == 0 || ((self == Self::MIN) && (rhs == -1))) {
None
} else {
// SAFETY: div by zero and by INT_MIN have been checked above
Some(unsafe { intrinsics::unchecked_div(self, rhs) })
}
}
/// Strict integer division. Computes `self / rhs`, panicking
/// if overflow occurred.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// The only case where such an overflow can occur is when one divides `MIN / -1` on a signed type (where
/// `MIN` is the negative minimal value for the type); this is equivalent to `-MIN`, a positive value
/// that is too large to represent in the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).strict_div(-1), ", stringify!($Max), ");")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_div(-1);")]
/// ```
///
/// The following panics because of division by zero:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div(0);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[rustc_const_unstable(feature = "const_strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_div(self, rhs: Self) -> Self {
let (a, b) = self.overflowing_div(rhs);
if unlikely!(b) { overflow_panic::div() } else { a }
}
/// Checked Euclidean division. Computes `self.div_euclid(rhs)`,
/// returning `None` if `rhs == 0` or the division results in overflow.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).checked_div_euclid(-1), Some(", stringify!($Max), "));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_div_euclid(-1), None);")]
#[doc = concat!("assert_eq!((1", stringify!($SelfT), ").checked_div_euclid(0), None);")]
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_div_euclid(self, rhs: Self) -> Option<Self> {
// Using `&` helps LLVM see that it is the same check made in division.
if unlikely!(rhs == 0 || ((self == Self::MIN) & (rhs == -1))) {
None
} else {
Some(self.div_euclid(rhs))
}
}
/// Strict Euclidean division. Computes `self.div_euclid(rhs)`, panicking
/// if overflow occurred.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// The only case where such an overflow can occur is when one divides `MIN / -1` on a signed type (where
/// `MIN` is the negative minimal value for the type); this is equivalent to `-MIN`, a positive value
/// that is too large to represent in the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).strict_div_euclid(-1), ", stringify!($Max), ");")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_div_euclid(-1);")]
/// ```
///
/// The following panics because of division by zero:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div_euclid(0);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[rustc_const_unstable(feature = "const_strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_div_euclid(self, rhs: Self) -> Self {
let (a, b) = self.overflowing_div_euclid(rhs);
if unlikely!(b) { overflow_panic::div() } else { a }
}
/// Checked integer remainder. Computes `self % rhs`, returning `None` if
/// `rhs == 0` or the division results in overflow.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(2), Some(1));")]
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(0), None);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_rem(-1), None);")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_rem(self, rhs: Self) -> Option<Self> {
if unlikely!(rhs == 0 || ((self == Self::MIN) && (rhs == -1))) {
None
} else {
// SAFETY: div by zero and by INT_MIN have been checked above
Some(unsafe { intrinsics::unchecked_rem(self, rhs) })
}
}
/// Strict integer remainder. Computes `self % rhs`, panicking if
/// the division results in overflow.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// The only case where such an overflow can occur is `x % y` for `MIN / -1` on a
/// signed type (where `MIN` is the negative minimal value), which is invalid due to implementation artifacts.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_rem(2), 1);")]
/// ```
///
/// The following panics because of division by zero:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem(0);")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_rem(-1);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[rustc_const_unstable(feature = "const_strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_rem(self, rhs: Self) -> Self {
let (a, b) = self.overflowing_rem(rhs);
if unlikely!(b) { overflow_panic::rem() } else { a }
}
/// Checked Euclidean remainder. Computes `self.rem_euclid(rhs)`, returning `None`
/// if `rhs == 0` or the division results in overflow.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(2), Some(1));")]
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(0), None);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_rem_euclid(-1), None);")]
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self> {
// Using `&` helps LLVM see that it is the same check made in division.
if unlikely!(rhs == 0 || ((self == Self::MIN) & (rhs == -1))) {
None
} else {
Some(self.rem_euclid(rhs))
}
}
/// Strict Euclidean remainder. Computes `self.rem_euclid(rhs)`, panicking if
/// the division results in overflow.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// The only case where such an overflow can occur is `x % y` for `MIN / -1` on a
/// signed type (where `MIN` is the negative minimal value), which is invalid due to implementation artifacts.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_rem_euclid(2), 1);")]
/// ```
///
/// The following panics because of division by zero:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem_euclid(0);")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_rem_euclid(-1);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[rustc_const_unstable(feature = "const_strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_rem_euclid(self, rhs: Self) -> Self {
let (a, b) = self.overflowing_rem_euclid(rhs);
if unlikely!(b) { overflow_panic::rem() } else { a }
}
/// Checked negation. Computes `-self`, returning `None` if `self == MIN`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_neg(), Some(-5));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_neg(), None);")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_neg(self) -> Option<Self> {
let (a, b) = self.overflowing_neg();
if unlikely!(b) { None } else { Some(a) }
}
/// Unchecked negation. Computes `-self`, assuming overflow cannot occur.
///
/// # Safety
///
/// This results in undefined behavior when
#[doc = concat!("`self == ", stringify!($SelfT), "::MIN`,")]
/// i.e. when [`checked_neg`] would return `None`.
///
#[doc = concat!("[`checked_neg`]: ", stringify!($SelfT), "::checked_neg")]
#[unstable(
feature = "unchecked_neg",
reason = "niche optimization path",
issue = "85122",
)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[rustc_const_unstable(feature = "unchecked_neg", issue = "85122")]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn unchecked_neg(self) -> Self {
// ICE resolved by #125184 isn't in bootstrap compiler
#[cfg(not(bootstrap))]
{
assert_unsafe_precondition!(
check_language_ub,
concat!(stringify!($SelfT), "::unchecked_neg cannot overflow"),
(
lhs: $SelfT = self,
) => !lhs.overflowing_neg().1,
);
}
// SAFETY: this is guaranteed to be safe by the caller.
unsafe {
intrinsics::unchecked_sub(0, self)
}
}
/// Strict negation. Computes `-self`, panicking if `self == MIN`.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_neg(), -5);")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_neg();")]
///
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[rustc_const_unstable(feature = "const_strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_neg(self) -> Self {
let (a, b) = self.overflowing_neg();
if unlikely!(b) { overflow_panic::neg() } else { a }
}
/// Checked shift left. Computes `self << rhs`, returning `None` if `rhs` is larger
/// than or equal to the number of bits in `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(4), Some(0x10));")]
#[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(129), None);")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
// We could always go back to wrapping
#[rustc_allow_const_fn_unstable(unchecked_shifts)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_shl(self, rhs: u32) -> Option<Self> {
// Not using overflowing_shl as that's a wrapping shift
if rhs < Self::BITS {
// SAFETY: just checked the RHS is in-range
Some(unsafe { self.unchecked_shl(rhs) })
} else {
None
}
}
/// Strict shift left. Computes `self << rhs`, panicking if `rhs` is larger
/// than or equal to the number of bits in `self`.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".strict_shl(4), 0x10);")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = 0x1", stringify!($SelfT), ".strict_shl(129);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[rustc_const_unstable(feature = "const_strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_shl(self, rhs: u32) -> Self {
let (a, b) = self.overflowing_shl(rhs);
if unlikely!(b) { overflow_panic::shl() } else { a }
}
/// Unchecked shift left. Computes `self << rhs`, assuming that
/// `rhs` is less than the number of bits in `self`.
///
/// # Safety
///
/// This results in undefined behavior if `rhs` is larger than
/// or equal to the number of bits in `self`,
/// i.e. when [`checked_shl`] would return `None`.
///
#[doc = concat!("[`checked_shl`]: ", stringify!($SelfT), "::checked_shl")]
#[unstable(
feature = "unchecked_shifts",
reason = "niche optimization path",
issue = "85122",
)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[rustc_const_unstable(feature = "unchecked_shifts", issue = "85122")]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn unchecked_shl(self, rhs: u32) -> Self {
assert_unsafe_precondition!(
check_language_ub,
concat!(stringify!($SelfT), "::unchecked_shl cannot overflow"),
(
rhs: u32 = rhs,
) => rhs < <$ActualT>::BITS,
);
// SAFETY: this is guaranteed to be safe by the caller.
unsafe {
intrinsics::unchecked_shl(self, rhs)
}
}
/// Checked shift right. Computes `self >> rhs`, returning `None` if `rhs` is
/// larger than or equal to the number of bits in `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(4), Some(0x1));")]
#[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(128), None);")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
// We could always go back to wrapping
#[rustc_allow_const_fn_unstable(unchecked_shifts)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_shr(self, rhs: u32) -> Option<Self> {
// Not using overflowing_shr as that's a wrapping shift
if rhs < Self::BITS {
// SAFETY: just checked the RHS is in-range
Some(unsafe { self.unchecked_shr(rhs) })
} else {
None
}
}
/// Strict shift right. Computes `self >> rhs`, panicking `rhs` is
/// larger than or equal to the number of bits in `self`.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".strict_shr(4), 0x1);")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shr(128);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[rustc_const_unstable(feature = "const_strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_shr(self, rhs: u32) -> Self {
let (a, b) = self.overflowing_shr(rhs);
if unlikely!(b) { overflow_panic::shr() } else { a }
}
/// Unchecked shift right. Computes `self >> rhs`, assuming that
/// `rhs` is less than the number of bits in `self`.
///
/// # Safety
///
/// This results in undefined behavior if `rhs` is larger than
/// or equal to the number of bits in `self`,
/// i.e. when [`checked_shr`] would return `None`.
///
#[doc = concat!("[`checked_shr`]: ", stringify!($SelfT), "::checked_shr")]
#[unstable(
feature = "unchecked_shifts",
reason = "niche optimization path",
issue = "85122",
)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[rustc_const_unstable(feature = "unchecked_shifts", issue = "85122")]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn unchecked_shr(self, rhs: u32) -> Self {
assert_unsafe_precondition!(
check_language_ub,
concat!(stringify!($SelfT), "::unchecked_shr cannot overflow"),
(
rhs: u32 = rhs,
) => rhs < <$ActualT>::BITS,
);
// SAFETY: this is guaranteed to be safe by the caller.
unsafe {
intrinsics::unchecked_shr(self, rhs)
}
}
/// Checked absolute value. Computes `self.abs()`, returning `None` if
/// `self == MIN`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!((-5", stringify!($SelfT), ").checked_abs(), Some(5));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.checked_abs(), None);")]
/// ```
#[stable(feature = "no_panic_abs", since = "1.13.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_abs(self) -> Option<Self> {
if self.is_negative() {
self.checked_neg()
} else {
Some(self)
}
}
/// Strict absolute value. Computes `self.abs()`, panicking if
/// `self == MIN`.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!((-5", stringify!($SelfT), ").strict_abs(), 5);")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = ", stringify!($SelfT), "::MIN.strict_abs();")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[rustc_const_unstable(feature = "const_strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_abs(self) -> Self {
if self.is_negative() {
self.strict_neg()
} else {
self
}
}
/// Checked exponentiation. Computes `self.pow(exp)`, returning `None` if
/// overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(8", stringify!($SelfT), ".checked_pow(2), Some(64));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_pow(2), None);")]
/// ```
#[stable(feature = "no_panic_pow", since = "1.34.0")]
#[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_pow(self, mut exp: u32) -> Option<Self> {
if exp == 0 {
return Some(1);
}
let mut base = self;
let mut acc: Self = 1;
while exp > 1 {
if (exp & 1) == 1 {
acc = try_opt!(acc.checked_mul(base));
}
exp /= 2;
base = try_opt!(base.checked_mul(base));
}
// since exp!=0, finally the exp must be 1.
// Deal with the final bit of the exponent separately, since
// squaring the base afterwards is not necessary and may cause a
// needless overflow.
acc.checked_mul(base)
}
/// Strict exponentiation. Computes `self.pow(exp)`, panicking if
/// overflow occurred.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(8", stringify!($SelfT), ".strict_pow(2), 64);")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_pow(2);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[rustc_const_unstable(feature = "const_strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_pow(self, mut exp: u32) -> Self {
if exp == 0 {
return 1;
}
let mut base = self;
let mut acc: Self = 1;
while exp > 1 {
if (exp & 1) == 1 {
acc = acc.strict_mul(base);
}
exp /= 2;
base = base.strict_mul(base);
}
// since exp!=0, finally the exp must be 1.
// Deal with the final bit of the exponent separately, since
// squaring the base afterwards is not necessary and may cause a
// needless overflow.
acc.strict_mul(base)
}
/// Returns the square root of the number, rounded down.
///
/// Returns `None` if `self` is negative.
///
/// # Examples
///
/// Basic usage:
/// ```
/// #![feature(isqrt)]
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_isqrt(), Some(3));")]
/// ```
#[unstable(feature = "isqrt", issue = "116226")]
#[rustc_const_unstable(feature = "isqrt", issue = "116226")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_isqrt(self) -> Option<Self> {
if self < 0 {
None
} else {
Some((self as $UnsignedT).isqrt() as Self)
}
}
/// Saturating integer addition. Computes `self + rhs`, saturating at the numeric
/// bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_add(1), 101);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add(100), ", stringify!($SelfT), "::MAX);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_add(-1), ", stringify!($SelfT), "::MIN);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn saturating_add(self, rhs: Self) -> Self {
intrinsics::saturating_add(self, rhs)
}
/// Saturating addition with an unsigned integer. Computes `self + rhs`,
/// saturating at the numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_unsigned(2), 3);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add_unsigned(100), ", stringify!($SelfT), "::MAX);")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_add_unsigned(self, rhs: $UnsignedT) -> Self {
// Overflow can only happen at the upper bound
// We cannot use `unwrap_or` here because it is not `const`
match self.checked_add_unsigned(rhs) {
Some(x) => x,
None => Self::MAX,
}
}
/// Saturating integer subtraction. Computes `self - rhs`, saturating at the
/// numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub(127), -27);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_sub(100), ", stringify!($SelfT), "::MIN);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_sub(-1), ", stringify!($SelfT), "::MAX);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn saturating_sub(self, rhs: Self) -> Self {
intrinsics::saturating_sub(self, rhs)
}
/// Saturating subtraction with an unsigned integer. Computes `self - rhs`,
/// saturating at the numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub_unsigned(127), -27);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_sub_unsigned(100), ", stringify!($SelfT), "::MIN);")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_sub_unsigned(self, rhs: $UnsignedT) -> Self {
// Overflow can only happen at the lower bound
// We cannot use `unwrap_or` here because it is not `const`
match self.checked_sub_unsigned(rhs) {
Some(x) => x,
None => Self::MIN,
}
}
/// Saturating integer negation. Computes `-self`, returning `MAX` if `self == MIN`
/// instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_neg(), -100);")]
#[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").saturating_neg(), 100);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_neg(), ", stringify!($SelfT), "::MAX);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_neg(), ", stringify!($SelfT), "::MIN + 1);")]
/// ```
#[stable(feature = "saturating_neg", since = "1.45.0")]
#[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn saturating_neg(self) -> Self {
intrinsics::saturating_sub(0, self)
}
/// Saturating absolute value. Computes `self.abs()`, returning `MAX` if `self ==
/// MIN` instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_abs(), 100);")]
#[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").saturating_abs(), 100);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_abs(), ", stringify!($SelfT), "::MAX);")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 1).saturating_abs(), ", stringify!($SelfT), "::MAX);")]
/// ```
#[stable(feature = "saturating_neg", since = "1.45.0")]
#[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_abs(self) -> Self {
if self.is_negative() {
self.saturating_neg()
} else {
self
}
}
/// Saturating integer multiplication. Computes `self * rhs`, saturating at the
/// numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".saturating_mul(12), 120);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_mul(10), ", stringify!($SelfT), "::MAX);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_mul(10), ", stringify!($SelfT), "::MIN);")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_mul(self, rhs: Self) -> Self {
match self.checked_mul(rhs) {
Some(x) => x,
None => if (self < 0) == (rhs < 0) {
Self::MAX
} else {
Self::MIN
}
}
}
/// Saturating integer division. Computes `self / rhs`, saturating at the
/// numeric bounds instead of overflowing.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".saturating_div(2), 2);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_div(-1), ", stringify!($SelfT), "::MIN + 1);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_div(-1), ", stringify!($SelfT), "::MAX);")]
///
/// ```
#[stable(feature = "saturating_div", since = "1.58.0")]
#[rustc_const_stable(feature = "saturating_div", since = "1.58.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_div(self, rhs: Self) -> Self {
match self.overflowing_div(rhs) {
(result, false) => result,
(_result, true) => Self::MAX, // MIN / -1 is the only possible saturating overflow
}
}
/// Saturating integer exponentiation. Computes `self.pow(exp)`,
/// saturating at the numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!((-4", stringify!($SelfT), ").saturating_pow(3), -64);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_pow(2), ", stringify!($SelfT), "::MAX);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.saturating_pow(3), ", stringify!($SelfT), "::MIN);")]
/// ```
#[stable(feature = "no_panic_pow", since = "1.34.0")]
#[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_pow(self, exp: u32) -> Self {
match self.checked_pow(exp) {
Some(x) => x,
None if self < 0 && exp % 2 == 1 => Self::MIN,
None => Self::MAX,
}
}
/// Wrapping (modular) addition. Computes `self + rhs`, wrapping around at the
/// boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_add(27), 127);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_add(2), ", stringify!($SelfT), "::MIN + 1);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_add(self, rhs: Self) -> Self {
intrinsics::wrapping_add(self, rhs)
}
/// Wrapping (modular) addition with an unsigned integer. Computes
/// `self + rhs`, wrapping around at the boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_add_unsigned(27), 127);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_add_unsigned(2), ", stringify!($SelfT), "::MIN + 1);")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_add_unsigned(self, rhs: $UnsignedT) -> Self {
self.wrapping_add(rhs as Self)
}
/// Wrapping (modular) subtraction. Computes `self - rhs`, wrapping around at the
/// boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".wrapping_sub(127), -127);")]
#[doc = concat!("assert_eq!((-2", stringify!($SelfT), ").wrapping_sub(", stringify!($SelfT), "::MAX), ", stringify!($SelfT), "::MAX);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_sub(self, rhs: Self) -> Self {
intrinsics::wrapping_sub(self, rhs)
}
/// Wrapping (modular) subtraction with an unsigned integer. Computes
/// `self - rhs`, wrapping around at the boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".wrapping_sub_unsigned(127), -127);")]
#[doc = concat!("assert_eq!((-2", stringify!($SelfT), ").wrapping_sub_unsigned(", stringify!($UnsignedT), "::MAX), -1);")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_sub_unsigned(self, rhs: $UnsignedT) -> Self {
self.wrapping_sub(rhs as Self)
}
/// Wrapping (modular) multiplication. Computes `self * rhs`, wrapping around at
/// the boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".wrapping_mul(12), 120);")]
/// assert_eq!(11i8.wrapping_mul(12), -124);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_mul(self, rhs: Self) -> Self {
intrinsics::wrapping_mul(self, rhs)
}
/// Wrapping (modular) division. Computes `self / rhs`, wrapping around at the
/// boundary of the type.
///
/// The only case where such wrapping can occur is when one divides `MIN / -1` on a signed type (where
/// `MIN` is the negative minimal value for the type); this is equivalent to `-MIN`, a positive value
/// that is too large to represent in the type. In such a case, this function returns `MIN` itself.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div(10), 10);")]
/// assert_eq!((-128i8).wrapping_div(-1), -128);
/// ```
#[stable(feature = "num_wrapping", since = "1.2.0")]
#[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn wrapping_div(self, rhs: Self) -> Self {
self.overflowing_div(rhs).0
}
/// Wrapping Euclidean division. Computes `self.div_euclid(rhs)`,
/// wrapping around at the boundary of the type.
///
/// Wrapping will only occur in `MIN / -1` on a signed type (where `MIN` is the negative minimal value
/// for the type). This is equivalent to `-MIN`, a positive value that is too large to represent in the
/// type. In this case, this method returns `MIN` itself.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div_euclid(10), 10);")]
/// assert_eq!((-128i8).wrapping_div_euclid(-1), -128);
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn wrapping_div_euclid(self, rhs: Self) -> Self {
self.overflowing_div_euclid(rhs).0
}
/// Wrapping (modular) remainder. Computes `self % rhs`, wrapping around at the
/// boundary of the type.
///
/// Such wrap-around never actually occurs mathematically; implementation artifacts make `x % y`
/// invalid for `MIN / -1` on a signed type (where `MIN` is the negative minimal value). In such a case,
/// this function returns `0`.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem(10), 0);")]
/// assert_eq!((-128i8).wrapping_rem(-1), 0);
/// ```
#[stable(feature = "num_wrapping", since = "1.2.0")]
#[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn wrapping_rem(self, rhs: Self) -> Self {
self.overflowing_rem(rhs).0
}
/// Wrapping Euclidean remainder. Computes `self.rem_euclid(rhs)`, wrapping around
/// at the boundary of the type.
///
/// Wrapping will only occur in `MIN % -1` on a signed type (where `MIN` is the negative minimal value
/// for the type). In this case, this method returns 0.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem_euclid(10), 0);")]
/// assert_eq!((-128i8).wrapping_rem_euclid(-1), 0);
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn wrapping_rem_euclid(self, rhs: Self) -> Self {
self.overflowing_rem_euclid(rhs).0
}
/// Wrapping (modular) negation. Computes `-self`, wrapping around at the boundary
/// of the type.
///
/// The only case where such wrapping can occur is when one negates `MIN` on a signed type (where `MIN`
/// is the negative minimal value for the type); this is a positive value that is too large to represent
/// in the type. In such a case, this function returns `MIN` itself.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_neg(), -100);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.wrapping_neg(), ", stringify!($SelfT), "::MIN);")]
/// ```
#[stable(feature = "num_wrapping", since = "1.2.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_neg(self) -> Self {
(0 as $SelfT).wrapping_sub(self)
}
/// Panic-free bitwise shift-left; yields `self << mask(rhs)`, where `mask` removes
/// any high-order bits of `rhs` that would cause the shift to exceed the bitwidth of the type.
///
/// Note that this is *not* the same as a rotate-left; the RHS of a wrapping shift-left is restricted to
/// the range of the type, rather than the bits shifted out of the LHS being returned to the other end.
/// The primitive integer types all implement a [`rotate_left`](Self::rotate_left) function,
/// which may be what you want instead.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").wrapping_shl(7), -128);")]
#[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").wrapping_shl(128), -1);")]
/// ```
#[stable(feature = "num_wrapping", since = "1.2.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[rustc_allow_const_fn_unstable(unchecked_shifts)]
pub const fn wrapping_shl(self, rhs: u32) -> Self {
// SAFETY: the masking by the bitsize of the type ensures that we do not shift
// out of bounds
unsafe {
self.unchecked_shl(rhs & (Self::BITS - 1))
}
}
/// Panic-free bitwise shift-right; yields `self >> mask(rhs)`, where `mask`
/// removes any high-order bits of `rhs` that would cause the shift to exceed the bitwidth of the type.
///
/// Note that this is *not* the same as a rotate-right; the RHS of a wrapping shift-right is restricted
/// to the range of the type, rather than the bits shifted out of the LHS being returned to the other
/// end. The primitive integer types all implement a [`rotate_right`](Self::rotate_right) function,
/// which may be what you want instead.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!((-128", stringify!($SelfT), ").wrapping_shr(7), -1);")]
/// assert_eq!((-128i16).wrapping_shr(64), -128);
/// ```
#[stable(feature = "num_wrapping", since = "1.2.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[rustc_allow_const_fn_unstable(unchecked_shifts)]
pub const fn wrapping_shr(self, rhs: u32) -> Self {
// SAFETY: the masking by the bitsize of the type ensures that we do not shift
// out of bounds
unsafe {
self.unchecked_shr(rhs & (Self::BITS - 1))
}
}
/// Wrapping (modular) absolute value. Computes `self.abs()`, wrapping around at
/// the boundary of the type.
///
/// The only case where such wrapping can occur is when one takes the absolute value of the negative
/// minimal value for the type; this is a positive value that is too large to represent in the type. In
/// such a case, this function returns `MIN` itself.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_abs(), 100);")]
#[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").wrapping_abs(), 100);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.wrapping_abs(), ", stringify!($SelfT), "::MIN);")]
/// assert_eq!((-128i8).wrapping_abs() as u8, 128);
/// ```
#[stable(feature = "no_panic_abs", since = "1.13.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[allow(unused_attributes)]
#[inline]
pub const fn wrapping_abs(self) -> Self {
if self.is_negative() {
self.wrapping_neg()
} else {
self
}
}
/// Computes the absolute value of `self` without any wrapping
/// or panicking.
///
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".unsigned_abs(), 100", stringify!($UnsignedT), ");")]
#[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").unsigned_abs(), 100", stringify!($UnsignedT), ");")]
/// assert_eq!((-128i8).unsigned_abs(), 128u8);
/// ```
#[stable(feature = "unsigned_abs", since = "1.51.0")]
#[rustc_const_stable(feature = "unsigned_abs", since = "1.51.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn unsigned_abs(self) -> $UnsignedT {
self.wrapping_abs() as $UnsignedT
}
/// Wrapping (modular) exponentiation. Computes `self.pow(exp)`,
/// wrapping around at the boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_pow(4), 81);")]
/// assert_eq!(3i8.wrapping_pow(5), -13);
/// assert_eq!(3i8.wrapping_pow(6), -39);
/// ```
#[stable(feature = "no_panic_pow", since = "1.34.0")]
#[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn wrapping_pow(self, mut exp: u32) -> Self {
if exp == 0 {
return 1;
}
let mut base = self;
let mut acc: Self = 1;
while exp > 1 {
if (exp & 1) == 1 {
acc = acc.wrapping_mul(base);
}
exp /= 2;
base = base.wrapping_mul(base);
}
// since exp!=0, finally the exp must be 1.
// Deal with the final bit of the exponent separately, since
// squaring the base afterwards is not necessary and may cause a
// needless overflow.
acc.wrapping_mul(base)
}
/// Calculates `self` + `rhs`
///
/// Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would
/// occur. If an overflow would have occurred then the wrapped value is returned.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_add(2), (7, false));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.overflowing_add(1), (", stringify!($SelfT), "::MIN, true));")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn overflowing_add(self, rhs: Self) -> (Self, bool) {
let (a, b) = intrinsics::add_with_overflow(self as $ActualT, rhs as $ActualT);
(a as Self, b)
}
/// Calculates `self` + `rhs` + `carry` and checks for overflow.
///
/// Performs "ternary addition" of two integer operands and a carry-in
/// bit, and returns a tuple of the sum along with a boolean indicating
/// whether an arithmetic overflow would occur. On overflow, the wrapped
/// value is returned.
///
/// This allows chaining together multiple additions to create a wider
/// addition, and can be useful for bignum addition. This method should
/// only be used for the most significant word; for the less significant
/// words the unsigned method
#[doc = concat!("[`", stringify!($UnsignedT), "::carrying_add`]")]
/// should be used.
///
/// The output boolean returned by this method is *not* a carry flag,
/// and should *not* be added to a more significant word.
///
/// If the input carry is false, this method is equivalent to
/// [`overflowing_add`](Self::overflowing_add).
///
/// # Examples
///
/// ```
/// #![feature(bigint_helper_methods)]
/// // Only the most significant word is signed.
/// //
#[doc = concat!("// 10 MAX (a = 10 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
#[doc = concat!("// + -5 9 (b = -5 × 2^", stringify!($BITS), " + 9)")]
/// // ---------
#[doc = concat!("// 6 8 (sum = 6 × 2^", stringify!($BITS), " + 8)")]
///
#[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (10, ", stringify!($UnsignedT), "::MAX);")]
#[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (-5, 9);")]
/// let carry0 = false;
///
#[doc = concat!("// ", stringify!($UnsignedT), "::carrying_add for the less significant words")]
/// let (sum0, carry1) = a0.carrying_add(b0, carry0);
/// assert_eq!(carry1, true);
///
#[doc = concat!("// ", stringify!($SelfT), "::carrying_add for the most significant word")]
/// let (sum1, overflow) = a1.carrying_add(b1, carry1);
/// assert_eq!(overflow, false);
///
/// assert_eq!((sum1, sum0), (6, 8));
/// ```
#[unstable(feature = "bigint_helper_methods", issue = "85532")]
#[rustc_const_unstable(feature = "const_bigint_helper_methods", issue = "85532")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool) {
// note: longer-term this should be done via an intrinsic.
// note: no intermediate overflow is required (https://github.com/rust-lang/rust/issues/85532#issuecomment-1032214946).
let (a, b) = self.overflowing_add(rhs);
let (c, d) = a.overflowing_add(carry as $SelfT);
(c, b != d)
}
/// Calculates `self` + `rhs` with an unsigned `rhs`
///
/// Returns a tuple of the addition along with a boolean indicating
/// whether an arithmetic overflow would occur. If an overflow would
/// have occurred then the wrapped value is returned.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_unsigned(2), (3, false));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN).overflowing_add_unsigned(", stringify!($UnsignedT), "::MAX), (", stringify!($SelfT), "::MAX, false));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_add_unsigned(3), (", stringify!($SelfT), "::MIN, true));")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn overflowing_add_unsigned(self, rhs: $UnsignedT) -> (Self, bool) {
let rhs = rhs as Self;
let (res, overflowed) = self.overflowing_add(rhs);
(res, overflowed ^ (rhs < 0))
}
/// Calculates `self` - `rhs`
///
/// Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow
/// would occur. If an overflow would have occurred then the wrapped value is returned.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_sub(2), (3, false));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_sub(1), (", stringify!($SelfT), "::MAX, true));")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool) {
let (a, b) = intrinsics::sub_with_overflow(self as $ActualT, rhs as $ActualT);
(a as Self, b)
}
/// Calculates `self` &minus; `rhs` &minus; `borrow` and checks for
/// overflow.
///
/// Performs "ternary subtraction" by subtracting both an integer
/// operand and a borrow-in bit from `self`, and returns a tuple of the
/// difference along with a boolean indicating whether an arithmetic
/// overflow would occur. On overflow, the wrapped value is returned.
///
/// This allows chaining together multiple subtractions to create a
/// wider subtraction, and can be useful for bignum subtraction. This
/// method should only be used for the most significant word; for the
/// less significant words the unsigned method
#[doc = concat!("[`", stringify!($UnsignedT), "::borrowing_sub`]")]
/// should be used.
///
/// The output boolean returned by this method is *not* a borrow flag,
/// and should *not* be subtracted from a more significant word.
///
/// If the input borrow is false, this method is equivalent to
/// [`overflowing_sub`](Self::overflowing_sub).
///
/// # Examples
///
/// ```
/// #![feature(bigint_helper_methods)]
/// // Only the most significant word is signed.
/// //
#[doc = concat!("// 6 8 (a = 6 × 2^", stringify!($BITS), " + 8)")]
#[doc = concat!("// - -5 9 (b = -5 × 2^", stringify!($BITS), " + 9)")]
/// // ---------
#[doc = concat!("// 10 MAX (diff = 10 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
///
#[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (6, 8);")]
#[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($UnsignedT), ") = (-5, 9);")]
/// let borrow0 = false;
///
#[doc = concat!("// ", stringify!($UnsignedT), "::borrowing_sub for the less significant words")]
/// let (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);
/// assert_eq!(borrow1, true);
///
#[doc = concat!("// ", stringify!($SelfT), "::borrowing_sub for the most significant word")]
/// let (diff1, overflow) = a1.borrowing_sub(b1, borrow1);
/// assert_eq!(overflow, false);
///
#[doc = concat!("assert_eq!((diff1, diff0), (10, ", stringify!($UnsignedT), "::MAX));")]
/// ```
#[unstable(feature = "bigint_helper_methods", issue = "85532")]
#[rustc_const_unstable(feature = "const_bigint_helper_methods", issue = "85532")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool) {
// note: longer-term this should be done via an intrinsic.
// note: no intermediate overflow is required (https://github.com/rust-lang/rust/issues/85532#issuecomment-1032214946).
let (a, b) = self.overflowing_sub(rhs);
let (c, d) = a.overflowing_sub(borrow as $SelfT);
(c, b != d)
}
/// Calculates `self` - `rhs` with an unsigned `rhs`
///
/// Returns a tuple of the subtraction along with a boolean indicating
/// whether an arithmetic overflow would occur. If an overflow would
/// have occurred then the wrapped value is returned.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_unsigned(2), (-1, false));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX).overflowing_sub_unsigned(", stringify!($UnsignedT), "::MAX), (", stringify!($SelfT), "::MIN, false));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN + 2).overflowing_sub_unsigned(3), (", stringify!($SelfT), "::MAX, true));")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn overflowing_sub_unsigned(self, rhs: $UnsignedT) -> (Self, bool) {
let rhs = rhs as Self;
let (res, overflowed) = self.overflowing_sub(rhs);
(res, overflowed ^ (rhs < 0))
}
/// Calculates the multiplication of `self` and `rhs`.
///
/// Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow
/// would occur. If an overflow would have occurred then the wrapped value is returned.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_mul(2), (10, false));")]
/// assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true));
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
let (a, b) = intrinsics::mul_with_overflow(self as $ActualT, rhs as $ActualT);
(a as Self, b)
}
/// Calculates the divisor when `self` is divided by `rhs`.
///
/// Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would
/// occur. If an overflow would occur then self is returned.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div(2), (2, false));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_div(-1), (", stringify!($SelfT), "::MIN, true));")]
/// ```
#[inline]
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
pub const fn overflowing_div(self, rhs: Self) -> (Self, bool) {
// Using `&` helps LLVM see that it is the same check made in division.
if unlikely!((self == Self::MIN) & (rhs == -1)) {
(self, true)
} else {
(self / rhs, false)
}
}
/// Calculates the quotient of Euclidean division `self.div_euclid(rhs)`.
///
/// Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would
/// occur. If an overflow would occur then `self` is returned.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div_euclid(2), (2, false));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_div_euclid(-1), (", stringify!($SelfT), "::MIN, true));")]
/// ```
#[inline]
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
pub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool) {
// Using `&` helps LLVM see that it is the same check made in division.
if unlikely!((self == Self::MIN) & (rhs == -1)) {
(self, true)
} else {
(self.div_euclid(rhs), false)
}
}
/// Calculates the remainder when `self` is divided by `rhs`.
///
/// Returns a tuple of the remainder after dividing along with a boolean indicating whether an
/// arithmetic overflow would occur. If an overflow would occur then 0 is returned.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem(2), (1, false));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_rem(-1), (0, true));")]
/// ```
#[inline]
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
pub const fn overflowing_rem(self, rhs: Self) -> (Self, bool) {
if unlikely!(rhs == -1) {
(0, self == Self::MIN)
} else {
(self % rhs, false)
}
}
/// Overflowing Euclidean remainder. Calculates `self.rem_euclid(rhs)`.
///
/// Returns a tuple of the remainder after dividing along with a boolean indicating whether an
/// arithmetic overflow would occur. If an overflow would occur then 0 is returned.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem_euclid(2), (1, false));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_rem_euclid(-1), (0, true));")]
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool) {
if unlikely!(rhs == -1) {
(0, self == Self::MIN)
} else {
(self.rem_euclid(rhs), false)
}
}
/// Negates self, overflowing if this is equal to the minimum value.
///
/// Returns a tuple of the negated version of self along with a boolean indicating whether an overflow
/// happened. If `self` is the minimum value (e.g., `i32::MIN` for values of type `i32`), then the
/// minimum value will be returned again and `true` will be returned for an overflow happening.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(2", stringify!($SelfT), ".overflowing_neg(), (-2, false));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.overflowing_neg(), (", stringify!($SelfT), "::MIN, true));")]
/// ```
#[inline]
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[allow(unused_attributes)]
pub const fn overflowing_neg(self) -> (Self, bool) {
if unlikely!(self == Self::MIN) {
(Self::MIN, true)
} else {
(-self, false)
}
}
/// Shifts self left by `rhs` bits.
///
/// Returns a tuple of the shifted version of self along with a boolean indicating whether the shift
/// value was larger than or equal to the number of bits. If the shift value is too large, then value is
/// masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0x1", stringify!($SelfT),".overflowing_shl(4), (0x10, false));")]
/// assert_eq!(0x1i32.overflowing_shl(36), (0x10, true));
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn overflowing_shl(self, rhs: u32) -> (Self, bool) {
(self.wrapping_shl(rhs), rhs >= Self::BITS)
}
/// Shifts self right by `rhs` bits.
///
/// Returns a tuple of the shifted version of self along with a boolean indicating whether the shift
/// value was larger than or equal to the number of bits. If the shift value is too large, then value is
/// masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(4), (0x1, false));")]
/// assert_eq!(0x10i32.overflowing_shr(36), (0x1, true));
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn overflowing_shr(self, rhs: u32) -> (Self, bool) {
(self.wrapping_shr(rhs), rhs >= Self::BITS)
}
/// Computes the absolute value of `self`.
///
/// Returns a tuple of the absolute version of self along with a boolean indicating whether an overflow
/// happened. If self is the minimum value
#[doc = concat!("(e.g., ", stringify!($SelfT), "::MIN for values of type ", stringify!($SelfT), "),")]
/// then the minimum value will be returned again and true will be returned
/// for an overflow happening.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".overflowing_abs(), (10, false));")]
#[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").overflowing_abs(), (10, false));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MIN).overflowing_abs(), (", stringify!($SelfT), "::MIN, true));")]
/// ```
#[stable(feature = "no_panic_abs", since = "1.13.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn overflowing_abs(self) -> (Self, bool) {
(self.wrapping_abs(), self == Self::MIN)
}
/// Raises self to the power of `exp`, using exponentiation by squaring.
///
/// Returns a tuple of the exponentiation along with a bool indicating
/// whether an overflow happened.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(3", stringify!($SelfT), ".overflowing_pow(4), (81, false));")]
/// assert_eq!(3i8.overflowing_pow(5), (-13, true));
/// ```
#[stable(feature = "no_panic_pow", since = "1.34.0")]
#[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn overflowing_pow(self, mut exp: u32) -> (Self, bool) {
if exp == 0 {
return (1,false);
}
let mut base = self;
let mut acc: Self = 1;
let mut overflown = false;
// Scratch space for storing results of overflowing_mul.
let mut r;
while exp > 1 {
if (exp & 1) == 1 {
r = acc.overflowing_mul(base);
acc = r.0;
overflown |= r.1;
}
exp /= 2;
r = base.overflowing_mul(base);
base = r.0;
overflown |= r.1;
}
// since exp!=0, finally the exp must be 1.
// Deal with the final bit of the exponent separately, since
// squaring the base afterwards is not necessary and may cause a
// needless overflow.
r = acc.overflowing_mul(base);
r.1 |= overflown;
r
}
/// Raises self to the power of `exp`, using exponentiation by squaring.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let x: ", stringify!($SelfT), " = 2; // or any other integer type")]
///
/// assert_eq!(x.pow(5), 32);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[rustc_inherit_overflow_checks]
pub const fn pow(self, mut exp: u32) -> Self {
if exp == 0 {
return 1;
}
let mut base = self;
let mut acc = 1;
while exp > 1 {
if (exp & 1) == 1 {
acc = acc * base;
}
exp /= 2;
base = base * base;
}
// since exp!=0, finally the exp must be 1.
// Deal with the final bit of the exponent separately, since
// squaring the base afterwards is not necessary and may cause a
// needless overflow.
acc * base
}
/// Returns the square root of the number, rounded down.
///
/// # Panics
///
/// This function will panic if `self` is negative.
///
/// # Examples
///
/// Basic usage:
/// ```
/// #![feature(isqrt)]
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
/// ```
#[unstable(feature = "isqrt", issue = "116226")]
#[rustc_const_unstable(feature = "isqrt", issue = "116226")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn isqrt(self) -> Self {
// I would like to implement it as
// ```
// self.checked_isqrt().expect("argument of integer square root must be non-negative")
// ```
// but `expect` is not yet stable as a `const fn`.
match self.checked_isqrt() {
Some(sqrt) => sqrt,
None => panic!("argument of integer square root must be non-negative"),
}
}
/// Calculates the quotient of Euclidean division of `self` by `rhs`.
///
/// This computes the integer `q` such that `self = q * rhs + r`, with
/// `r = self.rem_euclid(rhs)` and `0 <= r < abs(rhs)`.
///
/// In other words, the result is `self / rhs` rounded to the integer `q`
/// such that `self >= q * rhs`.
/// If `self > 0`, this is equal to round towards zero (the default in Rust);
/// if `self < 0`, this is equal to round towards +/- infinity.
///
/// # Panics
///
/// This function will panic if `rhs` is 0 or if `self` is -1 and `rhs` is
/// `Self::MIN`. This behavior is not affected by the `overflow-checks` flag.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let a: ", stringify!($SelfT), " = 7; // or any other integer type")]
/// let b = 4;
///
/// assert_eq!(a.div_euclid(b), 1); // 7 >= 4 * 1
/// assert_eq!(a.div_euclid(-b), -1); // 7 >= -4 * -1
/// assert_eq!((-a).div_euclid(b), -2); // -7 >= 4 * -2
/// assert_eq!((-a).div_euclid(-b), 2); // -7 >= -4 * 2
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn div_euclid(self, rhs: Self) -> Self {
let q = self / rhs;
if self % rhs < 0 {
return if rhs > 0 { q - 1 } else { q + 1 }
}
q
}
/// Calculates the least nonnegative remainder of `self (mod rhs)`.
///
/// This is done as if by the Euclidean division algorithm -- given
/// `r = self.rem_euclid(rhs)`, `self = rhs * self.div_euclid(rhs) + r`, and
/// `0 <= r < abs(rhs)`.
///
/// # Panics
///
/// This function will panic if `rhs` is 0 or if `self` is -1 and `rhs` is
/// `Self::MIN`. This behavior is not affected by the `overflow-checks` flag.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let a: ", stringify!($SelfT), " = 7; // or any other integer type")]
/// let b = 4;
///
/// assert_eq!(a.rem_euclid(b), 3);
/// assert_eq!((-a).rem_euclid(b), 1);
/// assert_eq!(a.rem_euclid(-b), 3);
/// assert_eq!((-a).rem_euclid(-b), 1);
/// ```
#[doc(alias = "modulo", alias = "mod")]
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn rem_euclid(self, rhs: Self) -> Self {
let r = self % rhs;
if r < 0 {
// Semantically equivalent to `if rhs < 0 { r - rhs } else { r + rhs }`.
// If `rhs` is not `Self::MIN`, then `r + abs(rhs)` will not overflow
// and is clearly equivalent, because `r` is negative.
// Otherwise, `rhs` is `Self::MIN`, then we have
// `r.wrapping_add(Self::MIN.wrapping_abs())`, which evaluates
// to `r.wrapping_add(Self::MIN)`, which is equivalent to
// `r - Self::MIN`, which is what we wanted (and will not overflow
// for negative `r`).
r.wrapping_add(rhs.wrapping_abs())
} else {
r
}
}
/// Calculates the quotient of `self` and `rhs`, rounding the result towards negative infinity.
///
/// # Panics
///
/// This function will panic if `rhs` is 0 or if `self` is -1 and `rhs` is
/// `Self::MIN`. This behavior is not affected by the `overflow-checks` flag.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(int_roundings)]
#[doc = concat!("let a: ", stringify!($SelfT)," = 8;")]
/// let b = 3;
///
/// assert_eq!(a.div_floor(b), 2);
/// assert_eq!(a.div_floor(-b), -3);
/// assert_eq!((-a).div_floor(b), -3);
/// assert_eq!((-a).div_floor(-b), 2);
/// ```
#[unstable(feature = "int_roundings", issue = "88581")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn div_floor(self, rhs: Self) -> Self {
let d = self / rhs;
let r = self % rhs;
if (r > 0 && rhs < 0) || (r < 0 && rhs > 0) {
d - 1
} else {
d
}
}
/// Calculates the quotient of `self` and `rhs`, rounding the result towards positive infinity.
///
/// # Panics
///
/// This function will panic if `rhs` is 0 or if `self` is -1 and `rhs` is
/// `Self::MIN`. This behavior is not affected by the `overflow-checks` flag.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(int_roundings)]
#[doc = concat!("let a: ", stringify!($SelfT)," = 8;")]
/// let b = 3;
///
/// assert_eq!(a.div_ceil(b), 3);
/// assert_eq!(a.div_ceil(-b), -2);
/// assert_eq!((-a).div_ceil(b), -2);
/// assert_eq!((-a).div_ceil(-b), 3);
/// ```
#[unstable(feature = "int_roundings", issue = "88581")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn div_ceil(self, rhs: Self) -> Self {
let d = self / rhs;
let r = self % rhs;
if (r > 0 && rhs > 0) || (r < 0 && rhs < 0) {
d + 1
} else {
d
}
}
/// If `rhs` is positive, calculates the smallest value greater than or
/// equal to `self` that is a multiple of `rhs`. If `rhs` is negative,
/// calculates the largest value less than or equal to `self` that is a
/// multiple of `rhs`.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// ## Overflow behavior
///
/// On overflow, this function will panic if overflow checks are enabled (default in debug
/// mode) and wrap if overflow checks are disabled (default in release mode).
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(int_roundings)]
#[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(8), 16);")]
#[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(8), 24);")]
#[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(-8), 16);")]
#[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(-8), 16);")]
#[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").next_multiple_of(8), -16);")]
#[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").next_multiple_of(8), -16);")]
#[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").next_multiple_of(-8), -16);")]
#[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").next_multiple_of(-8), -24);")]
/// ```
#[unstable(feature = "int_roundings", issue = "88581")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[rustc_inherit_overflow_checks]
pub const fn next_multiple_of(self, rhs: Self) -> Self {
// This would otherwise fail when calculating `r` when self == T::MIN.
if rhs == -1 {
return self;
}
let r = self % rhs;
let m = if (r > 0 && rhs < 0) || (r < 0 && rhs > 0) {
r + rhs
} else {
r
};
if m == 0 {
self
} else {
self + (rhs - m)
}
}
/// If `rhs` is positive, calculates the smallest value greater than or
/// equal to `self` that is a multiple of `rhs`. If `rhs` is negative,
/// calculates the largest value less than or equal to `self` that is a
/// multiple of `rhs`. Returns `None` if `rhs` is zero or the operation
/// would result in overflow.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(int_roundings)]
#[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(16));")]
#[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(24));")]
#[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(-8), Some(16));")]
#[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(-8), Some(16));")]
#[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").checked_next_multiple_of(8), Some(-16));")]
#[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").checked_next_multiple_of(8), Some(-16));")]
#[doc = concat!("assert_eq!((-16_", stringify!($SelfT), ").checked_next_multiple_of(-8), Some(-16));")]
#[doc = concat!("assert_eq!((-23_", stringify!($SelfT), ").checked_next_multiple_of(-8), Some(-24));")]
#[doc = concat!("assert_eq!(1_", stringify!($SelfT), ".checked_next_multiple_of(0), None);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_multiple_of(2), None);")]
/// ```
#[unstable(feature = "int_roundings", issue = "88581")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self> {
// This would otherwise fail when calculating `r` when self == T::MIN.
if rhs == -1 {
return Some(self);
}
let r = try_opt!(self.checked_rem(rhs));
let m = if (r > 0 && rhs < 0) || (r < 0 && rhs > 0) {
// r + rhs cannot overflow because they have opposite signs
r + rhs
} else {
r
};
if m == 0 {
Some(self)
} else {
// rhs - m cannot overflow because m has the same sign as rhs
self.checked_add(rhs - m)
}
}
/// Calculates the middle point of `self` and `rhs`.
///
/// `midpoint(a, b)` is `(a + b) >> 1` as if it were performed in a
/// sufficiently-large signed integral type. This implies that the result is
/// always rounded towards negative infinity and that no overflow will ever occur.
///
/// # Examples
///
/// ```
/// #![feature(num_midpoint)]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(4), 2);")]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(-1), -1);")]
#[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").midpoint(0), -1);")]
/// ```
#[unstable(feature = "num_midpoint", issue = "110840")]
#[rustc_const_unstable(feature = "const_num_midpoint", issue = "110840")]
#[rustc_allow_const_fn_unstable(const_num_midpoint)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn midpoint(self, rhs: Self) -> Self {
const U: $UnsignedT = <$SelfT>::MIN.unsigned_abs();
// Map an $SelfT to an $UnsignedT
// ex: i8 [-128; 127] to [0; 255]
const fn map(a: $SelfT) -> $UnsignedT {
(a as $UnsignedT) ^ U
}
// Map an $UnsignedT to an $SelfT
// ex: u8 [0; 255] to [-128; 127]
const fn demap(a: $UnsignedT) -> $SelfT {
(a ^ U) as $SelfT
}
demap(<$UnsignedT>::midpoint(map(self), map(rhs)))
}
/// Returns the logarithm of the number with respect to an arbitrary base,
/// rounded down.
///
/// This method might not be optimized owing to implementation details;
/// `ilog2` can produce results more efficiently for base 2, and `ilog10`
/// can produce results more efficiently for base 10.
///
/// # Panics
///
/// This function will panic if `self` is less than or equal to zero,
/// or if `base` is less than 2.
///
/// # Examples
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".ilog(5), 1);")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn ilog(self, base: Self) -> u32 {
assert!(base >= 2, "base of integer logarithm must be at least 2");
if let Some(log) = self.checked_ilog(base) {
log
} else {
int_log10::panic_for_nonpositive_argument()
}
}
/// Returns the base 2 logarithm of the number, rounded down.
///
/// # Panics
///
/// This function will panic if `self` is less than or equal to zero.
///
/// # Examples
///
/// ```
#[doc = concat!("assert_eq!(2", stringify!($SelfT), ".ilog2(), 1);")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn ilog2(self) -> u32 {
if let Some(log) = self.checked_ilog2() {
log
} else {
int_log10::panic_for_nonpositive_argument()
}
}
/// Returns the base 10 logarithm of the number, rounded down.
///
/// # Panics
///
/// This function will panic if `self` is less than or equal to zero.
///
/// # Example
///
/// ```
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".ilog10(), 1);")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn ilog10(self) -> u32 {
if let Some(log) = self.checked_ilog10() {
log
} else {
int_log10::panic_for_nonpositive_argument()
}
}
/// Returns the logarithm of the number with respect to an arbitrary base,
/// rounded down.
///
/// Returns `None` if the number is negative or zero, or if the base is not at least 2.
///
/// This method might not be optimized owing to implementation details;
/// `checked_ilog2` can produce results more efficiently for base 2, and
/// `checked_ilog10` can produce results more efficiently for base 10.
///
/// # Examples
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_ilog(5), Some(1));")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_ilog(self, base: Self) -> Option<u32> {
if self <= 0 || base <= 1 {
None
} else {
// Delegate to the unsigned implementation.
// The condition makes sure that both casts are exact.
(self as $UnsignedT).checked_ilog(base as $UnsignedT)
}
}
/// Returns the base 2 logarithm of the number, rounded down.
///
/// Returns `None` if the number is negative or zero.
///
/// # Examples
///
/// ```
#[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_ilog2(), Some(1));")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_ilog2(self) -> Option<u32> {
if self <= 0 {
None
} else {
// SAFETY: We just checked that this number is positive
let log = (Self::BITS - 1) - unsafe { intrinsics::ctlz_nonzero(self) as u32 };
Some(log)
}
}
/// Returns the base 10 logarithm of the number, rounded down.
///
/// Returns `None` if the number is negative or zero.
///
/// # Example
///
/// ```
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_ilog10(), Some(1));")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_ilog10(self) -> Option<u32> {
if self > 0 {
Some(int_log10::$ActualT(self as $ActualT))
} else {
None
}
}
/// Computes the absolute value of `self`.
///
/// # Overflow behavior
///
/// The absolute value of
#[doc = concat!("`", stringify!($SelfT), "::MIN`")]
/// cannot be represented as an
#[doc = concat!("`", stringify!($SelfT), "`,")]
/// and attempting to calculate it will cause an overflow. This means
/// that code in debug mode will trigger a panic on this case and
/// optimized code will return
#[doc = concat!("`", stringify!($SelfT), "::MIN`")]
/// without a panic. If you do not want this behavior, consider
/// using [`unsigned_abs`](Self::unsigned_abs) instead.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".abs(), 10);")]
#[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").abs(), 10);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[allow(unused_attributes)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[rustc_inherit_overflow_checks]
pub const fn abs(self) -> Self {
// Note that the #[rustc_inherit_overflow_checks] and #[inline]
// above mean that the overflow semantics of the subtraction
// depend on the crate we're being called from.
if self.is_negative() {
-self
} else {
self
}
}
/// Computes the absolute difference between `self` and `other`.
///
/// This function always returns the correct answer without overflow or
/// panics by returning an unsigned integer.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(80), 20", stringify!($UnsignedT), ");")]
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(110), 10", stringify!($UnsignedT), ");")]
#[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").abs_diff(80), 180", stringify!($UnsignedT), ");")]
#[doc = concat!("assert_eq!((-100", stringify!($SelfT), ").abs_diff(-120), 20", stringify!($UnsignedT), ");")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN.abs_diff(", stringify!($SelfT), "::MAX), ", stringify!($UnsignedT), "::MAX);")]
/// ```
#[stable(feature = "int_abs_diff", since = "1.60.0")]
#[rustc_const_stable(feature = "int_abs_diff", since = "1.60.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn abs_diff(self, other: Self) -> $UnsignedT {
if self < other {
// Converting a non-negative x from signed to unsigned by using
// `x as U` is left unchanged, but a negative x is converted
// to value x + 2^N. Thus if `s` and `o` are binary variables
// respectively indicating whether `self` and `other` are
// negative, we are computing the mathematical value:
//
// (other + o*2^N) - (self + s*2^N) mod 2^N
// other - self + (o-s)*2^N mod 2^N
// other - self mod 2^N
//
// Finally, taking the mod 2^N of the mathematical value of
// `other - self` does not change it as it already is
// in the range [0, 2^N).
(other as $UnsignedT).wrapping_sub(self as $UnsignedT)
} else {
(self as $UnsignedT).wrapping_sub(other as $UnsignedT)
}
}
/// Returns a number representing sign of `self`.
///
/// - `0` if the number is zero
/// - `1` if the number is positive
/// - `-1` if the number is negative
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".signum(), 1);")]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".signum(), 0);")]
#[doc = concat!("assert_eq!((-10", stringify!($SelfT), ").signum(), -1);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_sign", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn signum(self) -> Self {
// Picking the right way to phrase this is complicated
// (<https://graphics.stanford.edu/~seander/bithacks.html#CopyIntegerSign>)
// so delegate it to `Ord` which is already producing -1/0/+1
// exactly like we need and can be the place to deal with the complexity.
// FIXME(const-hack): replace with cmp
if self < 0 { -1 }
else if self == 0 { 0 }
else { 1 }
}
/// Returns `true` if `self` is positive and `false` if the number is zero or
/// negative.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert!(10", stringify!($SelfT), ".is_positive());")]
#[doc = concat!("assert!(!(-10", stringify!($SelfT), ").is_positive());")]
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[inline(always)]
pub const fn is_positive(self) -> bool { self > 0 }
/// Returns `true` if `self` is negative and `false` if the number is zero or
/// positive.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert!((-10", stringify!($SelfT), ").is_negative());")]
#[doc = concat!("assert!(!10", stringify!($SelfT), ".is_negative());")]
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_methods", since = "1.32.0")]
#[inline(always)]
pub const fn is_negative(self) -> bool { self < 0 }
/// Return the memory representation of this integer as a byte array in
/// big-endian (network) byte order.
///
#[doc = $to_xe_bytes_doc]
///
/// # Examples
///
/// ```
#[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_be_bytes();")]
#[doc = concat!("assert_eq!(bytes, ", $be_bytes, ");")]
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn to_be_bytes(self) -> [u8; mem::size_of::<Self>()] {
self.to_be().to_ne_bytes()
}
/// Return the memory representation of this integer as a byte array in
/// little-endian byte order.
///
#[doc = $to_xe_bytes_doc]
///
/// # Examples
///
/// ```
#[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_le_bytes();")]
#[doc = concat!("assert_eq!(bytes, ", $le_bytes, ");")]
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn to_le_bytes(self) -> [u8; mem::size_of::<Self>()] {
self.to_le().to_ne_bytes()
}
/// Return the memory representation of this integer as a byte array in
/// native byte order.
///
/// As the target platform's native endianness is used, portable code
/// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate,
/// instead.
///
#[doc = $to_xe_bytes_doc]
///
/// [`to_be_bytes`]: Self::to_be_bytes
/// [`to_le_bytes`]: Self::to_le_bytes
///
/// # Examples
///
/// ```
#[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_ne_bytes();")]
/// assert_eq!(
/// bytes,
/// if cfg!(target_endian = "big") {
#[doc = concat!(" ", $be_bytes)]
/// } else {
#[doc = concat!(" ", $le_bytes)]
/// }
/// );
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
// SAFETY: const sound because integers are plain old datatypes so we can always
// transmute them to arrays of bytes
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn to_ne_bytes(self) -> [u8; mem::size_of::<Self>()] {
// SAFETY: integers are plain old datatypes so we can always transmute them to
// arrays of bytes
unsafe { mem::transmute(self) }
}
/// Create an integer value from its representation as a byte array in
/// big endian.
///
#[doc = $from_xe_bytes_doc]
///
/// # Examples
///
/// ```
#[doc = concat!("let value = ", stringify!($SelfT), "::from_be_bytes(", $be_bytes, ");")]
#[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
/// ```
///
/// When starting from a slice rather than an array, fallible conversion APIs can be used:
///
/// ```
#[doc = concat!("fn read_be_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
#[doc = concat!(" let (int_bytes, rest) = input.split_at(std::mem::size_of::<", stringify!($SelfT), ">());")]
/// *input = rest;
#[doc = concat!(" ", stringify!($SelfT), "::from_be_bytes(int_bytes.try_into().unwrap())")]
/// }
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
#[must_use]
#[inline]
pub const fn from_be_bytes(bytes: [u8; mem::size_of::<Self>()]) -> Self {
Self::from_be(Self::from_ne_bytes(bytes))
}
/// Create an integer value from its representation as a byte array in
/// little endian.
///
#[doc = $from_xe_bytes_doc]
///
/// # Examples
///
/// ```
#[doc = concat!("let value = ", stringify!($SelfT), "::from_le_bytes(", $le_bytes, ");")]
#[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
/// ```
///
/// When starting from a slice rather than an array, fallible conversion APIs can be used:
///
/// ```
#[doc = concat!("fn read_le_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
#[doc = concat!(" let (int_bytes, rest) = input.split_at(std::mem::size_of::<", stringify!($SelfT), ">());")]
/// *input = rest;
#[doc = concat!(" ", stringify!($SelfT), "::from_le_bytes(int_bytes.try_into().unwrap())")]
/// }
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
#[must_use]
#[inline]
pub const fn from_le_bytes(bytes: [u8; mem::size_of::<Self>()]) -> Self {
Self::from_le(Self::from_ne_bytes(bytes))
}
/// Create an integer value from its memory representation as a byte
/// array in native endianness.
///
/// As the target platform's native endianness is used, portable code
/// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
/// appropriate instead.
///
/// [`from_be_bytes`]: Self::from_be_bytes
/// [`from_le_bytes`]: Self::from_le_bytes
///
#[doc = $from_xe_bytes_doc]
///
/// # Examples
///
/// ```
#[doc = concat!("let value = ", stringify!($SelfT), "::from_ne_bytes(if cfg!(target_endian = \"big\") {")]
#[doc = concat!(" ", $be_bytes)]
/// } else {
#[doc = concat!(" ", $le_bytes)]
/// });
#[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
/// ```
///
/// When starting from a slice rather than an array, fallible conversion APIs can be used:
///
/// ```
#[doc = concat!("fn read_ne_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
#[doc = concat!(" let (int_bytes, rest) = input.split_at(std::mem::size_of::<", stringify!($SelfT), ">());")]
/// *input = rest;
#[doc = concat!(" ", stringify!($SelfT), "::from_ne_bytes(int_bytes.try_into().unwrap())")]
/// }
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
#[must_use]
// SAFETY: const sound because integers are plain old datatypes so we can always
// transmute to them
#[inline]
pub const fn from_ne_bytes(bytes: [u8; mem::size_of::<Self>()]) -> Self {
// SAFETY: integers are plain old datatypes so we can always transmute to them
unsafe { mem::transmute(bytes) }
}
/// New code should prefer to use
#[doc = concat!("[`", stringify!($SelfT), "::MIN", "`] instead.")]
///
/// Returns the smallest value that can be represented by this integer type.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline(always)]
#[rustc_promotable]
#[rustc_const_stable(feature = "const_min_value", since = "1.32.0")]
#[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on this type")]
#[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_min_value")]
pub const fn min_value() -> Self {
Self::MIN
}
/// New code should prefer to use
#[doc = concat!("[`", stringify!($SelfT), "::MAX", "`] instead.")]
///
/// Returns the largest value that can be represented by this integer type.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline(always)]
#[rustc_promotable]
#[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
#[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on this type")]
#[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_max_value")]
pub const fn max_value() -> Self {
Self::MAX
}
}
}