rust/library/core/src/tuple.rs

202 lines
6.7 KiB
Rust

// See core/src/primitive_docs.rs for documentation.
use crate::cmp::Ordering::{self, *};
use crate::marker::ConstParamTy;
use crate::marker::StructuralPartialEq;
// Recursive macro for implementing n-ary tuple functions and operations
//
// Also provides implementations for tuples with lesser arity. For example, tuple_impls!(A B C)
// will implement everything for (A, B, C), (A, B) and (A,).
macro_rules! tuple_impls {
// Stopping criteria (1-ary tuple)
($T:ident) => {
tuple_impls!(@impl $T);
};
// Running criteria (n-ary tuple, with n >= 2)
($T:ident $( $U:ident )+) => {
tuple_impls!($( $U )+);
tuple_impls!(@impl $T $( $U )+);
};
// "Private" internal implementation
(@impl $( $T:ident )+) => {
maybe_tuple_doc! {
$($T)+ @
#[stable(feature = "rust1", since = "1.0.0")]
impl<$($T: PartialEq),+> PartialEq for ($($T,)+)
where
last_type!($($T,)+): ?Sized
{
#[inline]
fn eq(&self, other: &($($T,)+)) -> bool {
$( ${ignore($T)} self.${index()} == other.${index()} )&&+
}
#[inline]
fn ne(&self, other: &($($T,)+)) -> bool {
$( ${ignore($T)} self.${index()} != other.${index()} )||+
}
}
}
maybe_tuple_doc! {
$($T)+ @
#[stable(feature = "rust1", since = "1.0.0")]
impl<$($T: Eq),+> Eq for ($($T,)+)
where
last_type!($($T,)+): ?Sized
{}
}
maybe_tuple_doc! {
$($T)+ @
#[unstable(feature = "structural_match", issue = "31434")]
impl<$($T: ConstParamTy),+> ConstParamTy for ($($T,)+)
{}
}
maybe_tuple_doc! {
$($T)+ @
#[unstable(feature = "structural_match", issue = "31434")]
impl<$($T),+> StructuralPartialEq for ($($T,)+)
{}
}
maybe_tuple_doc! {
$($T)+ @
#[stable(feature = "rust1", since = "1.0.0")]
impl<$($T: PartialOrd),+> PartialOrd for ($($T,)+)
where
last_type!($($T,)+): ?Sized
{
#[inline]
fn partial_cmp(&self, other: &($($T,)+)) -> Option<Ordering> {
lexical_partial_cmp!($( ${ignore($T)} self.${index()}, other.${index()} ),+)
}
#[inline]
fn lt(&self, other: &($($T,)+)) -> bool {
lexical_ord!(lt, Less, $( ${ignore($T)} self.${index()}, other.${index()} ),+)
}
#[inline]
fn le(&self, other: &($($T,)+)) -> bool {
lexical_ord!(le, Less, $( ${ignore($T)} self.${index()}, other.${index()} ),+)
}
#[inline]
fn ge(&self, other: &($($T,)+)) -> bool {
lexical_ord!(ge, Greater, $( ${ignore($T)} self.${index()}, other.${index()} ),+)
}
#[inline]
fn gt(&self, other: &($($T,)+)) -> bool {
lexical_ord!(gt, Greater, $( ${ignore($T)} self.${index()}, other.${index()} ),+)
}
}
}
maybe_tuple_doc! {
$($T)+ @
#[stable(feature = "rust1", since = "1.0.0")]
impl<$($T: Ord),+> Ord for ($($T,)+)
where
last_type!($($T,)+): ?Sized
{
#[inline]
fn cmp(&self, other: &($($T,)+)) -> Ordering {
lexical_cmp!($( ${ignore($T)} self.${index()}, other.${index()} ),+)
}
}
}
maybe_tuple_doc! {
$($T)+ @
#[stable(feature = "rust1", since = "1.0.0")]
impl<$($T: Default),+> Default for ($($T,)+) {
#[inline]
fn default() -> ($($T,)+) {
($({ let x: $T = Default::default(); x},)+)
}
}
}
#[stable(feature = "array_tuple_conv", since = "1.71.0")]
impl<T> From<[T; ${count($T)}]> for ($(${ignore($T)} T,)+) {
#[inline]
#[allow(non_snake_case)]
fn from(array: [T; ${count($T)}]) -> Self {
let [$($T,)+] = array;
($($T,)+)
}
}
#[stable(feature = "array_tuple_conv", since = "1.71.0")]
impl<T> From<($(${ignore($T)} T,)+)> for [T; ${count($T)}] {
#[inline]
#[allow(non_snake_case)]
fn from(tuple: ($(${ignore($T)} T,)+)) -> Self {
let ($($T,)+) = tuple;
[$($T,)+]
}
}
}
}
// If this is a unary tuple, it adds a doc comment.
// Otherwise, it hides the docs entirely.
macro_rules! maybe_tuple_doc {
($a:ident @ #[$meta:meta] $item:item) => {
#[doc(fake_variadic)]
#[doc = "This trait is implemented for tuples up to twelve items long."]
#[$meta]
$item
};
($a:ident $($rest_a:ident)+ @ #[$meta:meta] $item:item) => {
#[doc(hidden)]
#[$meta]
$item
};
}
// Constructs an expression that performs a lexical ordering using method `$rel`.
// The values are interleaved, so the macro invocation for
// `(a1, a2, a3) < (b1, b2, b3)` would be `lexical_ord!(lt, opt_is_lt, a1, b1,
// a2, b2, a3, b3)` (and similarly for `lexical_cmp`)
//
// `$ne_rel` is only used to determine the result after checking that they're
// not equal, so `lt` and `le` can both just use `Less`.
macro_rules! lexical_ord {
($rel: ident, $ne_rel: ident, $a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => {{
let c = PartialOrd::partial_cmp(&$a, &$b);
if c != Some(Equal) { c == Some($ne_rel) }
else { lexical_ord!($rel, $ne_rel, $($rest_a, $rest_b),+) }
}};
($rel: ident, $ne_rel: ident, $a:expr, $b:expr) => {
// Use the specific method for the last element
PartialOrd::$rel(&$a, &$b)
};
}
macro_rules! lexical_partial_cmp {
($a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => {
match ($a).partial_cmp(&$b) {
Some(Equal) => lexical_partial_cmp!($($rest_a, $rest_b),+),
ordering => ordering
}
};
($a:expr, $b:expr) => { ($a).partial_cmp(&$b) };
}
macro_rules! lexical_cmp {
($a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => {
match ($a).cmp(&$b) {
Equal => lexical_cmp!($($rest_a, $rest_b),+),
ordering => ordering
}
};
($a:expr, $b:expr) => { ($a).cmp(&$b) };
}
macro_rules! last_type {
($a:ident,) => { $a };
($a:ident, $($rest_a:ident,)+) => { last_type!($($rest_a,)+) };
}
tuple_impls!(E D C B A Z Y X W V U T);